B16-Test Beamline
I12-JEEP: Joint Engineering, Environmental and Processing
I22-Small angle scattering & Diffraction
|
Abstract: The combination of X-ray imaging and diffraction techniques provides a unique tool for structural and mechanical analysis of engineering components. A variety of modes can be employed in terms of the spatial resolution (length-scale), time resolution (frequency), and the nature of the physical quantity being interrogated. This thesis describes my contributions towards the development of novel X-ray “rich” imaging experimental techniques and data interpretation. The experimental findings have been validated via comparison with other experimental methods and numerical modelling.
The combination of fast acquisition rate and high penetration properties of X-ray beams allows the collection of high-resolution 3-D tomographic data sets at submicron resolution during in situ deformation experiments. Digital Volume Correlation analysis tools developed in this study help understand crack propagation mechanisms in quasi-brittle materials and elasto-plastic deformation in co-sprayed composites.
For the cases of crystalline specimens where the knowledge of “live” or residual elastic strain distributions is required, diffraction techniques have been advanced. Diffraction Strain Tomography (DST) allows non-destructive reconstruction of the 2-D (in-plane) variation of the out-of-plane strain component. Another diffraction modality dubbed Laue Orientation Tomography (LOT), a grain mapping approach has been proposed and developed based on the translate-rotate tomographic acquisition strategy. It allows the reconstruction of grain shape and orientation within polycrystalline samples, and provides information about intragranular lattice strain and distortion. The implications of this method have been thoroughly investigated.
State-of-the-art engineering characterisation techniques evolve towards scrutinising submicron scale structural features and strain variation using the complementarity of X-ray imaging and diffraction. The first successful feasibility study is reported of in operando stress analysis in an internal combustion engine.
Finally, further advancement of ‘rich’ imaging techniques is illustrated via the first successful application of Time-of-Flight Neutron Diffraction Strain (TOF-NDST) tomography for non-destructive reconstruction of the complete strain tensor using an inverse eigenstrain formulation.
|
Sep 2014
|
|
I13-2-Diamond Manchester Imaging
|
C. G.
Fenton
,
C. L.
Doig
,
S.
Fareed
,
A.
Naylor
,
A. P.
Morrell
,
O.
Addison
,
C.
Wehmeyer
,
C. D.
Buckley
,
M. S.
Cooper
,
G. G.
Lavery
,
K.
Raza
,
R. S.
Hardy
Diamond Proposal Number(s):
[16654]
Open Access
Abstract: Background: Despite their efficacy in the treatment of chronic inflammation, the prolonged application of therapeutic glucocorticoids (GCs) is limited by significant systemic side effects including glucocorticoid-induced osteoporosis (GIOP). 11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a bi-directional enzyme that primarily activates GCs in vivo, regulating tissue-specific exposure to active GC. We aimed to determine the contribution of 11β-HSD1 to GIOP. Methods: Wild type (WT) and 11β-HSD1 knockout (KO) mice were treated with corticosterone (100 μg/ml, 0.66% ethanol) or vehicle (0.66% ethanol) in drinking water over 4 weeks (six animals per group). Bone parameters were assessed by micro-CT, sub-micron absorption tomography and serum markers of bone metabolism. Osteoblast and osteoclast gene expression was assessed by quantitative RT-PCR. Results: Wild type mice receiving corticosterone developed marked trabecular bone loss with reduced bone volume to tissue volume (BV/TV), trabecular thickness (Tb.Th) and trabecular number (Tb.N). Histomorphometric analysis revealed a dramatic reduction in osteoblast numbers. This was matched by a significant reduction in the serum marker of osteoblast bone formation P1NP and gene expression of the osteoblast markers Alp and Bglap. In contrast, 11β-HSD1 KO mice receiving corticosterone demonstrated almost complete protection from trabecular bone loss, with partial protection from the decrease in osteoblast numbers and markers of bone formation relative to WT counterparts receiving corticosterone. Conclusions: This study demonstrates that 11β-HSD1 plays a critical role in GIOP, mediating GC suppression of anabolic bone formation and reduced bone volume secondary to a decrease in osteoblast numbers. This raises the intriguing possibility that therapeutic inhibitors of 11β-HSD1 may be effective in preventing GIOP in patients receiving therapeutic steroids.
|
Aug 2019
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
A.
Koko
,
S.
Singh
,
S.
Barhli
,
T.
Connolley
,
N. T.
Vo
,
T.
Wigger
,
D.
Liu
,
Y.
Fu
,
J.
Réthoré
,
J.
Lechambre
,
J.-Y.
Buffiere
,
T. J.
Marrow
Diamond Proposal Number(s):
[12585]
Open Access
Abstract: The propagation rate of a fatigue crack in a nodular cast iron, loaded in cyclic tension, has been studied in situ by X-ray computed tomography and digital volume correlation. The semi-elliptical crack initiated from an asymmetric corner notch and evolved to a semi-circular shape, initially with a higher growth rate towards one edge of the notch before the propagation rate along the crack front became essentially independent of po-sition. The phase congruency of the displacement field was used to measure the crack shape. The three-dimensional stress intensity factors were calculated via a linear elastic finite element model that used the displacement fields around the crack front as the boundary conditions. Closure of the crack tip region was observed. The cyclic change in the local mode I opening of the crack tip determined the local fatigue crack propaga-tion rate along the crack front.
|
May 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[8519, 9036]
Abstract: Nuclear graphite has a complex porous microstructure, which depends on raw materials and manufacturing process; porosity can change with radiolytic oxidation and also in the absence of oxidation with very high neutron fluences. Porosity directly affects the fracture process and the graphite tensile strength. To understand the effects of porosity on component strength and its relation to small specimen data, microstructure sensitive models are needed that can simulate the statistics of strength of porous microstructures, also addressing size and strain gradients effects such as notches. This requires multi-scale models that capture the key microstructural features with sufficient fidelity, and also with sufficient computational economy to simulate component behaviour. To achieve this, an innovative technique to calculate the elastic stress distribution in a 3D porous solid under uniaxial or biaxial tension has been developed that uses Cellular Automata. Synthetic microstructures with arbitrary distributions of pore sizes and shapes are created that simulate realistic microstructures; a fracture algorithm simulates failure initiation and crack growth. The model calculates the tensile strength of a microstructure volume for any arbitrary failure criteria; the critical strain energy release rate is used as an example to demonstrate how porosity affects the fracture process. The presented Cellular Automata (CA) model is at least an order of magnitude more efficient than finite element methods of equivalent discretisation; CA are also scale independent and well suited for parallel computing. This would allow large volumes of representative microstructures to be simulated, with a Monte-Carlo based approach to investigate strength variability.
|
Jan 2016
|
|
I13-2-Diamond Manchester Imaging
|
Rafael
Leiva-Garcia
,
Adam
Anders
,
Tony
Cook
,
Grace
Burke
,
Chris
Muryn
,
Mary
Ryan
,
Malte
Storm
,
Silvia
Vargas
,
Philip
Withers
,
Brian
Connolly
,
James
Carr
,
Sheetal
Handa
Diamond Proposal Number(s):
[21142]
Abstract: Thick corrosion scales form within carbon steel oilfield pipelines in sweet (CO2 saturated) environments. The morphology and the extent of the resultant pseudo-protective nature of these scales has been seen to be dependent on multiple factors including solution pH, temperature, flow rate, and partial pressure of CO2 present. Different techniques (SEM, XRD, FIB, etc.) have been used in the past to characterise these corrosion scales. However, limitations in these techniques occur due to the fact that only small regions of the scale can be characterised in a feasible time. Further limitations may result in difficulty to relate local scale features with corrosion morphology on the evolving metal surface (i.e. localised corrosion) as the morphology of the substrate surface can only be characterised once the scale is removed. The aim of this work is to address this issue through the use of high resolution x-ray absorption tomography to characterise the internal morphology of the corrosion scales from ex situ specimens exposed to CO2 environments as a function of pH and temperature.
X-65 pipeline steel, high purity 99.99 Fe and low purity 99.0 Fe pins were used in these experiments. Specimens were exposed to CO2saturated solutions using two different methods, notably open circuit potential (OCP) immersion for 7-12 days and electrochemical polarisation for two hours at 200 mV(vs OCP). After the scaling experiments, samples were characterised using XRD and SEM. X-ray tomography was subsequently performed at the University of Manchester X-ray Imaging Facilities to characterise the corrosion morphology. Transmission X-ray microscopy (TXM) was used in absorption mode and phase contrast mode to obtain three dimensional reconstructions of the specimens, where the different features of the scale and the internal corroded substrate were imaged and characterised simultaneously.
Results indicate differences in the morphology of the corrosion scale depending on the method that was used to corrode the samples. As a consequence of the supersaturation in Fe2+, polarised samples present a thicker scale than the scales obtained by immersion at OCP conditions. The polarisation process also produces a less uniform corroded substrate than when the sample is immersed for 7 days at open circuit in the corroding environments used. In this work high resolution X-ray tomography has been proven to be a very powerful technique to study the scale morphology as well as the features of localised corrosion occurring under scale in the substrate.
|
Sep 2019
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[18215]
Abstract: This paper reports observations of electrical tree growth by X-ray computed tomography (XCT) in multiple steps. Growth between times of observation has been obtained by subtraction of an image from the subsequent one. Partial discharge (PD) signals were also recorded during tree growth. It is determined that not all PDs support tree extension. By comparing the energy released by PD and the vaporization energy of newly grown tree channels, it is found that only the PDs that reach the tree tips can contribute to the growth of tree length. In such cases, the efficiency of energy conversion was very high, whereas PD resulting in increases in tree channel diameter had a much lower conversion efficiency. Nano XCT images reveal many finer branches along the trunk of the main tree and in the front of the main channel tree tips. It seems that those finer branches led to tree growth, but were not directly associated with local PD. The new imaging techniques have shown great value in resolving the relationship between partial discharge activity and electrical tree growth, providing a platform for deeper understanding of the tree growth process, and interpretation of partial discharge measurements.
|
Mar 2020
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[20479]
Open Access
Abstract: We report major advances in the analysis of synchrotron 3D datasets acquired from human healthy and carious dental enamel. Synchrotron tomographic data for three human carious samples and a non-carious reference tooth sample were collected with the voxel size of 325 nm for a total volume of 815.4 × 815.4 × 685.4 μm3. The results were compared with conventional X-ray tomography, optical microscopy, and focused ion beam-scanning electron microscopy. Clear contrast was seen within demineralised enamel due to reduced mineral content using synchrotron tomography in comparison with conventional tomography. The features were found to correspond with the rod and inter-rod structures within prismatic enamel. 2D and 3D image segmentation allowed statistical quantification of important structural characteristics (such as the aspect ratio and the cross-sectional area of voids, as well as the demineralised volume fraction as a function of lesion depth). Whilst overall carious enamel predominantly displayed Type 1 etching pattern (preferential demineralisation of enamel rods), a transition between Type 2 (preferential inter-rod demineralisation) and Type 1 was identified within the same lesion for the first time. This study does not intend to give extensive results on the different lesions studied, but to illustrate a new method and its potential application.
|
May 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[7730]
Abstract: Cellular Automata integrated with Finite Elements (CAFE) have been used to develop a method to account for the effect of microstructure on quasi-brittle damage development. The microstructure is simulated explicitly by subdividing a finite element into smaller cells. A heterogeneous structure is created from key cells (seeds) using defined characteristics; the influence of the initial finite element mesh is effectively removed during the development of the microstructure. Graded microstructures, textures, particle anisotropy and multiple phases can be readily simulated, such as those in composites and porous materials. A mesh-free framework has been developed to compute the damage development through the microstructure, using cellular automata. With this method, we can study the development of discontinuous cracking and damage coalescence, and its sensitivity to microstructure. Experiments have been carried out to observe the three-dimensional development of damage, using high-resolution synchrotron X-ray computed tomography and digital volume correlation to observe Hertzian indentation of a SiC-SiC fibre composite, quantifying damage by measurement of the displacement fields within the material. The results demonstrate the applicability of the modelling strategy to damage development, and show how model input data may be obtained from small specimen tests, which could be performed at elevated temperatures with irradiated materials.
|
Oct 2013
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Chun
Huang
,
Matthew
Wilson
,
Kosuke
Suzuki
,
Enzo
Liotti
,
Thomas
Connolley
,
Oxana
Magdysyuk
,
Stephen
Collins
,
Frederic
Van Assche
,
Matthieu N
Boone
,
Matthew C.
Veale
,
Andrew
Lui
,
Rhian-Mair
Wheater
,
Chu Lun Alex
Leung
Diamond Proposal Number(s):
[23400]
Open Access
Abstract: The performance of Li+ ion batteries (LIBs) is hindered by steep Li+ ion concentration gradients in the electrodes. Although thick electrodes (≥300 µm) have the potential for reducing the proportion of inactive components inside LIBs and increasing battery energy density, the Li+ ion concentration gradient problem is exacerbated. Most understanding of Li+ ion diffusion in the electrodes is based on computational modeling because of the low atomic number (Z) of Li. There are few experimental methods to visualize Li+ ion concentration distribution of the electrode within a battery of typical configurations, for example, coin cells with stainless steel casing. Here, for the first time, an interrupted in situ correlative imaging technique is developed, combining novel, full-field X-ray Compton scattering imaging with X-ray computed tomography that allows 3D pixel-by-pixel mapping of both Li+ stoichiometry and electrode microstructure of a LiNi0.8Mn0.1Co0.1O2 cathode to correlate the chemical and physical properties of the electrode inside a working coin cell battery. An electrode microstructure containing vertically oriented pore arrays and a density gradient is fabricated. It is shown how the designed electrode microstructure improves Li+ ion diffusivity, homogenizes Li+ ion concentration through the ultra-thick electrode (1 mm), and improves utilization of electrode active materials.
|
Apr 2022
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[22588, 17241]
Open Access
Abstract: Colonic crypts are tubular glands that multiply through a symmetric branching process called crypt fission. During the early stages of colorectal cancer, the normal fission process is disturbed, leading to asymmetrical branching or budding. The challenging shapes of the budding crypts make it difficult to prepare paraffin sections for conventional histology, resulting in colonic cross sections with crypts that are only partially visible. To study crypt budding in situ and in three dimensions (3D), we employ X-ray micro-computed tomography to image intact colons, and a new method we developed (3D cyclorama) to digitally unroll them. Here, we present, verify and validate our ‘3D cyclorama’ method that digitally unrolls deformed tubes of non-uniform thickness. It employs principles from electrostatics to reform the tube into a series of onion-like surfaces, which are mapped onto planar panoramic views. This enables the study of features extending over several layers of the tube’s depth, demonstrated here by two case studies: (i) microvilli in the human placenta and (ii) 3D-printed adhesive films for drug delivery. Our 3D cyclorama method can provide novel insights into a wide spectrum of applications where digital unrolling or flattening is necessary, including long bones, teeth roots and ancient scrolls.
|
Jul 2021
|
|