I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
M. Fleur
Sernee
,
Julie E.
Ralton
,
Tracy L.
Nero
,
Lukasz F.
Sobala
,
Joachim
Kloehn
,
Marcel A.
Vieira-Lara
,
Simon A.
Cobbold
,
Lauren
Stanton
,
Douglas E. V.
Pires
,
Eric
Hanssen
,
Alexandra
Males
,
Tom
Ward
,
Laurence M.
Bastidas
,
Phillip L.
Van Der Peet
,
Michael W.
Parker
,
David B.
Ascher
,
Spencer J.
Williams
,
Gideon J.
Davies
,
Malcolm J.
Mcconville
Diamond Proposal Number(s):
[13587, 18598]
Open Access
Abstract: Parasitic protists belonging to the genus Leishmania synthesize the non-canonical carbohydrate reserve, mannogen, which is composed of β-1,2-mannan oligosaccharides. Here, we identify a class of dual-activity mannosyltransferase/phosphorylases (MTPs) that catalyze both the sugar nucleotide-dependent biosynthesis and phosphorolytic turnover of mannogen. Structural and phylogenic analysis shows that while the MTPs are structurally related to bacterial mannan phosphorylases, they constitute a distinct family of glycosyltransferases (GT108) that have likely been acquired by horizontal gene transfer from gram-positive bacteria. The seven MTPs catalyze the constitutive synthesis and turnover of mannogen. This metabolic rheostat protects obligate intracellular parasite stages from nutrient excess, and is essential for thermotolerance and parasite infectivity in the mammalian host. Our results suggest that the acquisition and expansion of the MTP family in Leishmania increased the metabolic flexibility of these protists and contributed to their capacity to colonize new host niches.
|
Sep 2019
|
|
Krios III-Titan Krios III at Diamond
|
Pranav N. M.
Shah
,
James B.
Gilchrist
,
Björn O.
Forsberg
,
Alister
Burt
,
Andrew
Howe
,
Shyamal
Mosalaganti
,
William
Wan
,
Julika
Radecke
,
Yuriy
Chaban
,
Geoff
Sutton
,
David I.
Stuart
,
Mark
Boyce
Diamond Proposal Number(s):
[21004]
Open Access
Abstract: Rotavirus assembly is a complex process that involves the stepwise acquisition of protein layers in distinct intracellular locations to form the fully assembled particle. Understanding and visualization of the assembly process has been hampered by the inaccessibility of unstable intermediates. We characterize the assembly pathway of group A rotaviruses observed in situ within cryo-preserved infected cells through the use of cryoelectron tomography of cellular lamellae. Our findings demonstrate that the viral polymerase VP1 recruits viral genomes during particle assembly, as revealed by infecting with a conditionally lethal mutant. Additionally, pharmacological inhibition to arrest the transiently enveloped stage uncovered a unique conformation of the VP4 spike. Subtomogram averaging provided atomic models of four intermediate states, including a pre-packaging single-layered intermediate, the double-layered particle, the transiently enveloped double-layered particle, and the fully assembled triple-layered virus particle. In summary, these complementary approaches enable us to elucidate the discrete steps involved in forming an intracellular rotavirus particle.
|
Mar 2023
|
|
I02-Macromolecular Crystallography
I03-Macromolecular Crystallography
|
Sander
Herfst
,
Jie
Zhang
,
Mathilde
Richard
,
Ryan
Mcbride
,
Pascal
Lexmond
,
Theo M.
Bestebroer
,
Monique I. J.
Spronken
,
Dennis
De Meulder
,
Judith M.
Van Den Brand
,
Miruna E.
Rosu
,
Stephen R.
Martin
,
Steven J.
Gamblin
,
Xiaoli
Xiong
,
Wenjie
Peng
,
Rogier
Bodewes
,
Erhard
Van Der Vries
,
Albert D. M. E.
Osterhaus
,
James C.
Paulson
,
John J.
Skehel
,
Ron A. M.
Fouchier
Diamond Proposal Number(s):
[9826, 13775]
Abstract: In 2014, an outbreak of avian A/H10N7 influenza virus occurred among seals along North-European coastal waters, significantly impacting seal populations. Here, we examine the cross-species transmission and mammalian adaptation of this influenza A virus, revealing changes in the hemagglutinin surface protein that increase stability and receptor binding. The seal A/H10N7 virus was aerosol or respiratory droplet transmissible between ferrets. Compared with avian H10 hemagglutinin, seal H10 hemagglutinin showed stronger binding to the human-type sialic acid receptor, with preferential binding to α2,6-linked sialic acids on long extended branches. In X-ray structures, changes in the 220-loop of the receptor-binding pocket caused similar interactions with human receptor as seen for pandemic strains. Two substitutions made seal H10 hemagglutinin more stable than avian H10 hemagglutinin and similar to human hemagglutinin. Consequently, identification of avian-origin influenza viruses across mammals appears critical to detect influenza A viruses posing a major threat to humans and other mammals.
|
Oct 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[7351, 12718]
Abstract: Uropathogenic E. coli (UPEC) is the dominant cause of urinary tract infections, clinically described as cystitis. UPEC express CUP pili, which are extracellular fibers tipped with adhesins that bind mucosal surfaces of the urinary tract. Here we identify the role of the F9/Yde/Fml pilus for UPEC persistence in the inflamed urothelium. The Fml adhesin FmlH binds galactose β1-3 N-acetylgalactosamine found in core-1 and -2 O-glycans. Deletion of fmlH had no effect on UPEC virulence in an acute mouse model of cystitis. However, FmlH provided a fitness advantage during chronic cystitis, which is manifested as persistent bacteriuria, high bladder bacterial burdens, and chronic inflammation. In situ binding confirmed that FmlH bound avidly to the inflamed, but not the naive bladder. In accordance with its pathogenic profile, vaccination with FmlH significantly protected mice from chronic cystitis. Thus, UPEC employ separate CUP pili to adapt to the rapidly changing niche during bladder infection.
|
Oct 2016
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[9826]
Open Access
Abstract: The SAMHD1 triphosphohydrolase inhibits HIV-1 infection of myeloid and resting T cells by depleting dNTPs. To overcome SAMHD1, HIV-2 and some SIVs encode either of two lineages of the accessory protein Vpx that bind the SAMHD1 N or C terminus and redirect the host cullin-4 ubiquitin ligase to target SAMHD1 for proteasomal degradation. We present the ternary complex of Vpx from SIV that infects mandrills (SIVmnd-2) with the cullin-4 substrate receptor, DCAF1, and N-terminal and SAM domains from mandrill SAMHD1. The structure reveals details of Vpx lineage-specific targeting of SAMHD1 N-terminal “degron” sequences. Comparison with Vpx from SIV that infects sooty mangabeys (SIVsmm) complexed with SAMHD1-DCAF1 identifies molecular determinants directing Vpx lineages to N- or C-terminal SAMHD1 sequences. Inspection of the Vpx-DCAF1 interface also reveals conservation of Vpx with the evolutionally related HIV-1/SIV accessory protein Vpr. These data suggest a unified model for how Vpx and Vpr exploit DCAF1 to promote viral replication.
|
Apr 2015
|
|
I24-Microfocus Macromolecular Crystallography
|
Peter T.
Buckley
,
Rita
Chan
,
Jeffrey
Fernandez
,
Jinquan
Luo
,
Keenan A.
Lacey
,
Ashley L.
Dumont
,
Aidan
O’malley
,
Randall J.
Brezski
,
Songmao
Zheng
,
Thomas
Malia
,
Brian
Whitaker
,
Adam
Zwolak
,
Angela
Payne
,
Desmond
Clark
,
Martin
Sigg
,
Eilyn R.
Lacy
,
Anna
Kornilova
,
Debra
Kwok
,
Steve
Mccarthy
,
Bingyuan
Wu
,
Brian
Morrow
,
Jennifer
Nemeth-Seay
,
Ted
Petley
,
Sam
Wu
,
William R.
Strohl
,
Anthony S.
Lynch
,
Victor J.
Torres
Open Access
Abstract: Treating and preventing infections by antimicrobial-resistant bacterial pathogens is a worldwide problem. Pathogens such as Staphylococcus aureus produce an array of virulence determinants, making it difficult to identify single targets for the development of vaccines or monoclonal therapies. We described a human-derived anti-S. aureus monoclonal antibody (mAb)-centyrin fusion protein (“mAbtyrin”) that simultaneously targets multiple bacterial adhesins, resists proteolysis by bacterial protease GluV8, avoids Fc engagement by S. aureus IgG-binding proteins SpA and Sbi, and neutralizes pore-forming leukocidins via fusion with anti-toxin centyrins, while maintaining Fc- and complement-mediated functions. Compared with the parental mAb, mAbtyrin protected human phagocytes and boosted phagocyte-mediated killing. The mAbtyrin also reduced pathology, reduced bacterial burden, and protected from different types of infections in preclinical animal models. Finally, mAbtyrin synergized with vancomycin, enhancing pathogen clearance in an animal model of bacteremia. Altogether, these data establish the potential of multivalent mAbs for treating and preventing S. aureus diseases.
|
Apr 2023
|
|
I03-Macromolecular Crystallography
Krios I-Titan Krios I at Diamond
|
Jiandong
Huo
,
Yuguang
Zhao
,
Jingshan
Ren
,
Daming
Zhou
,
Helen M. E.
Duyvesteyn
,
Helen M.
Ginn
,
Loic
Carrique
,
Tomas
Malinauskas
,
Reinis R.
Ruza
,
Pranav N. M.
Shah
,
Tiong Kit
Tan
,
Pramila
Rijal
,
Naomi
Coombes
,
Kevin R.
Bewley
,
Julia A.
Tree
,
Julika
Radecke
,
Neil
Paterson
,
Piyasa
Supasa
,
Juthathip
Mongkolsapaya
,
Gavin R.
Screaton
,
Miles
Carroll
,
Alain
Townsend
,
Elizabeth E.
Fry
,
Raymond J.
Owens
,
David I.
Stuart
Diamond Proposal Number(s):
[19946, 26983]
Open Access
Abstract: There are as yet no licenced therapeutics for the COVID-19 pandemic. The causal coronavirus (SARS-CoV-2) binds host cells via a trimeric Spike whose receptor binding domain (RBD) recognises angiotensin-converting enzyme 2 (ACE2), initiating conformational changes that drive membrane fusion. We find that the monoclonal antibody CR3022 binds the RBD tightly, neutralising SARS-CoV-2 and report the crystal structure at 2.4 Å of the Fab/RBD complex. Some crystals are suitable for screening for entry-blocking inhibitors. The highly conserved, structure-stabilising, CR3022 epitope is inaccessible in the prefusion Spike, suggesting that CR3022 binding facilitates conversion to the fusion-incompetent post-fusion state. Cryo-EM analysis confirms that incubation of Spike with CR3022 Fab leads to destruction of the prefusion trimer. Presentation of this cryptic epitope in an RBD-based vaccine might advantageously focus immune responses. Binders at this epitope may be useful therapeutically, possibly in synergy with an antibody blocking receptor attachment.
|
Jun 2020
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[25402]
Open Access
Abstract: The induction of interferon (IFN)-stimulated genes by STATs is a critical host defense mechanism against virus infection. Here, we report that a highly expressed poxvirus protein, 018, inhibits IFN-induced signaling by binding to the SH2 domain of STAT1, thereby preventing the association of STAT1 with an activated IFN receptor. Despite encoding other inhibitors of IFN-induced signaling, a poxvirus mutant lacking 018 was attenuated in mice. The 2.0 Å crystal structure of the 018:STAT1 complex reveals a phosphotyrosine-independent mode of 018 binding to the SH2 domain of STAT1. Moreover, the STAT1-binding motif of 018 shows similarity to the STAT1-binding proteins from Nipah virus, which, similar to 018, block the association of STAT1 with an IFN receptor. Overall, these results uncover a conserved mechanism of STAT1 antagonism that is employed independently by distinct virus families.
|
Feb 2022
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[1228]
Abstract: Lentiviruses are widespread in a variety of vertebrates, often associated with chronic disease states. However, until the recent discovery of the prehistoric endogenous lentiviruses in rabbits (RELIK) and lemurs (PSIV), it was thought that lentiviruses had no capacity for germline integration and were only spread horizontally in an exogenous fashion. The existence of RELIK and PSIV refuted these ideas, revealing lentiviruses to be present in a range of mammals, capable of germline integration, and far more ancient than previously thought. Using Gag sequences reconstructed from the remnants of these prehistoric lentiviruses, we have produced chimeric lentiviruses capable of infecting nondividing cells and determined structures of capsid domains from PSIV and RELIK. We show that the structures from these diverse viruses are highly similar, containing features found in modern-day lentiviruses, including a functional cyclophilin-binding loop. Together, these data provide evidence for an ancient capsid-cyclophilin interaction preserved throughout lentiviral evolution.
|
Sep 2010
|
|
I02-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Clinton K. Y.
Lau
,
Louise
Turner
,
Jakob S.
Jespersen
,
Edward D.
Lowe
,
Bent
Petersen
,
Christian W.
Wang
,
Jens E. V.
Petersen
,
John
Lusingu
,
Thor G.
Theander
,
Thomas
Lavstsen
,
Matthew K.
Higgins
Open Access
Abstract: The PfEMP1 family of surface proteins is central for Plasmodium falciparum virulence and must retain the ability to bind to host receptors while also diversifying to aid immune evasion. The interaction between CIDRα1 domains of PfEMP1 and endothelial protein C receptor (EPCR) is associated with severe childhood malaria. We combine crystal structures of CIDRα1:EPCR complexes with analysis of 885 CIDRα1 sequences, showing that the EPCR-binding surfaces of CIDRα1 domains are conserved in shape and bonding potential, despite dramatic sequence diversity. Additionally, these domains mimic features of the natural EPCR ligand and can block this ligand interaction. Using peptides corresponding to the EPCR-binding region, antibodies can be purified from individuals in malaria-endemic regions that block EPCR binding of diverse CIDRα1 variants. This highlights the extent to which such a surface protein family can diversify while maintaining ligand-binding capacity and identifies features that should be mimicked in immunogens to prevent EPCR binding.
|
Jan 2015
|
|