I05-ARPES
|
Diamond Proposal Number(s):
[18586]
Abstract: Using angle-resolved photoemission spectroscopy and density functional theory (DFT) we study the electronic structure of layered BaZnBi2. Our experimental results show no evidence of Dirac states in BaZnBi2 originated either from the bulk or the surface. The calculated band structure without spin-orbit interaction shows linear band dispersions at X along the X−M high-symmetry line. In addition, the calculations suggest a gapless band crossing point along the Γ−M high-symmetry line. However, as soon as the spin-orbit interaction is turned on, the band crossing point is significantly gapped out. These observations suggest that the Dirac fermions in BaZnBi2 are trivial similar to the Dirac states observed in grapheme. The experimental observations are in good agreement with the DFT calculations.
|
Feb 2019
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[12975]
Abstract: A combination of scanning tunneling microscopy, low-energy electron diffraction,and low-energy electron microscopy (LEEM) has been used to identify the structural phases formed by 7,7,8,8-tetracyanoquinodimethane (TCNQ) on Ag(111). These comprise a two-dimensional gas phase, a low-density commensurate (LDC) phase, and a higher-density incommensurate (HDI) phase. LEEM also shows the presence of an additional “precursor-HDI” phase with a surface unit mesh area only ≈3% less than the HDI phase. Normal incidence x-ray standing-wave measurements of the HDI phase yield almost identical structural parameters to the LDC phase for which a full structure determination has been previously reported. The results show TCNQ does not adopt the inverted bowl distortion favored in earlier density functional theory calculations of TCNQ on coinage metal surfaces, but the N atoms are twisted out of the molecular plane, an effect found for the LDC phase to be due to incorporation of Ag adatoms. The possible role of Ag adatoms in the HDI phase, and in the transition from the precursor-HDI phase, is discussed.
|
Nov 2019
|
|
I09-Surface and Interface Structural Analysis
I10-Beamline for Advanced Dichroism
|
Georgios
Araizi-kanoutas
,
Jaap
Geessinck
,
Nicolas
Gauquelin
,
Steef
Smit
,
Xanthe H.
Verbeek
,
Shrawan K.
Mishra
,
Peter
Bencok
,
Christoph
Schlueter
,
Tien-lin
Lee
,
Dileep
Krishnan
,
Jarmo
Fatermans
,
Jo
Verbeeck
,
Guus
Rijnders
,
Gertjan
Koster
,
Mark S.
Golden
Abstract: We report charge transfer up to a single electron per interfacial unit cell across nonpolar heterointerfaces from the Mott insulator
LaTi
O
3
to the charge transfer insulator
LaCo
O
3
. In high-quality bi- and trilayer systems grown using pulsed laser deposition, soft x-ray absorption, dichroism, and scanning transmission electron microscopy-electron energy loss spectroscopy are used to probe the cobalt-
3
d
electron count and provide an element-specific investigation of the magnetic properties. The experiments show the cobalt valence conversion is active within 3 unit cells of the heterointerface, and able to generate full conversion to
3
d
7
divalent Co, which displays a paramagnetic ground state. The number of
LaTi
O
3
/
LaCo
O
3
interfaces, the thickness of an additional, electronically insulating “break” layer between the
LaTi
O
3
and
LaCo
O
3
, and the
LaCo
O
3
film thickness itself in trilayers provide a trio of control knobs for average charge of the cobalt ions in
LaCo
O
3
, illustrating the efficacy of
O
−
2
p
band alignment as a guiding principle for property design in complex oxide heterointerfaces.
|
Feb 2020
|
|
B18-Core EXAFS
I10-Beamline for Advanced Dichroism
|
Diamond Proposal Number(s):
[13759, 15702]
Abstract: Magnetically doped topological insulators (TIs) are key to realizing the quantum anomalous Hall (QAH) effect, with the prospect of enabling dissipationless electronic devices in the future. Doping of the well-established three-dimensional TIs of the (Bi,Sb)2(Se,Te)3 family with the transition metals Cr and V is now an established approach for observing the QAH state at very low temperatures. While the magnetic transition temperatures of these materials are on the order of tens of degrees Kelvin, full quantization of the QAH state is achieved below ∼100 mK, governed by the size of the magnetic gap and thus the out-of-plane magnetic moment. In an attempt to raise the size of the magnetic moment and transition temperature, we carried out a structural and magnetic investigation of codoped (V,Cr):Sb2Te3 thin films. Starting from singly doped Cr:Sb2Te3 films, free of secondary phases and with a transition temperature of ∼72 K, we introduced increasing fractions of V and found a doubling of the transition temperature, while the magnetic moment decreases. In order to separate the properties and contributions of the two transition metals in the complex doping scenario independently, we
employed spectroscopic x-ray techniques. Surprisingly, already small amounts of V lead to the formation of the secondary phase Cr2Te3. No V was detectable in the Sb2Te3 matrix. Instead, it acts as a surfactant and can be found in the near-surface layers at the end of the growth. Our paper highlights the importance of x-ray-based studies for the doping of van der Waals systems, for which the optimization of magnetic moment or transition temperature alone is not necessarily a good strategy.
|
Nov 2017
|
|
I13-1-Coherence
|
Diamond Proposal Number(s):
[10117]
Abstract: Imaging ordered materials with coherent x rays holds great potential to improve our understanding of phenomena in complex materials systems where emergent behavior can arise due to coupling of spin, lattice, and orbital degrees of freedom. Coherent diffractive imaging (CDI) is a lensless imaging technique for probing the structure of materials in three dimensions. Central to the success of the CDI method is the inversion of propagated wave field information to recover a quantitative image of the illuminated crystalline structure. Present challenges faced with existing approaches to image recovery are often due to nonuniqueness of wave propagated forms of the electron density information that can cause prohibitive stagnation of the reconstruction algorithm. Here we report on a major advancement in image recovery that is able to recover the three-dimensional image of a 492 nm gold single crystal undergoing progressive deformation to a highly strained condition without the use of a priori information. Our findings also demonstrate the significance of robust image recovery techniques for revealing high resolution topological structure.
|
Apr 2019
|
|
I09-Surface and Interface Structural Analysis
|
David A.
Duncan
,
Nicolae
Atodiresei
,
Simone
Lisi
,
Phil J.
Blowey
,
Vasile
Caciuc
,
James
Lawrence
,
Tien-lin
Lee
,
Maria Grazia
Betti
,
Pardeep Kumar
Thakur
,
Ada
Della Pia
,
Stefan
Blügel
,
Giovanni
Costantini
,
D. Phil
Woodruff
Diamond Proposal Number(s):
[13625]
Open Access
Abstract: Theoretical formulations capable of modeling chemical interactions over 3–4 orders of magnitude of bond strength, from covalent to van der Waals (vdW) forces, are one of the primary goals in materials physics, and chemistry. Development of vdW corrections for density-functional theory has thus been a major research field for two decades. While many of these corrections are semiempirical, more theoretically rigorous ab initio functionals have been developed. The ab initio functional vdW-DF2, when coupled with the reoptimized B86 exchange function (vdW-DF2-rB86), has typically performed as well, if not better than most semiempirical formulations. Here we present a system, Co intercalation of graphene on Ir(111), for which a semiempirical correction predicts local corrugation maxima in locations at which the vdW-DF2-rB86 functional predicts global minima. Sub-angstrom precision quantitative structural measurements show better agreement with the semiempirical correction. We posit that it is balancing the weak vdW interaction with the stronger, even covalent, interactions that proves a challenge for the vdW-DF2-rB86 functional.
|
Dec 2019
|
|
Theoretical Physics
|
Abstract: The source of n-type conductivity in undoped transparent conducting oxides has been a topic of debate for several decades. The point defect of most interest in this respect is the oxygen vacancy, but there are many conflicting reports on the shallow versus deep nature of its related electronic states. Here, using a hybrid quantum mechanical/molecular mechanical embedded cluster approach, we have computed formation and ionization energies of oxygen vacancies in three representative transparent conducting oxides: In2O3,SnO2, and ZnO. We find that, in all three systems, oxygen vacancies form well-localized, compact donors. We demonstrate, however, that such compactness does not preclude the possibility of these states being shallow in nature, by considering the energetic balance between the vacancy binding electrons that are in localized orbitals or in effective-mass-like diffuse orbitals. Our results show that, thermodynamically, oxygen vacancies in bulk In2O3 introduce states above the conduction band minimum that contribute significantly to the observed conductivity properties of undoped samples. For ZnO and SnO2, the states are deep, and our calculated ionization energies agree well with thermochemical and optical experiments. Our computed equilibrium defect and carrier concentrations, however, demonstrate that these deep states may nevertheless lead to significant intrinsic n-type conductivity under reducing conditions at elevated temperatures. Our study indicates the importance of oxygen vacancies in relation to intrinsic carrier concentrations not only in In2O3, but also in SnO2 and ZnO.
|
May 2018
|
|
I09-Surface and Interface Structural Analysis
|
Chiara
Bigi
,
Zhenkun
Tang
,
Gian Marco
Pierantozzi
,
Pasquale
Orgiani
,
Pranab Kumar
Das
,
Jun
Fujii
,
Ivana
Vobornik
,
Tommaso
Pincelli
,
Alessandro
Troglia
,
Tien-lin
Lee
,
Regina
Ciancio
,
Goran
Drazic
,
Alberto
Verdini
,
Anna
Regoutz
,
Phil D. C.
King
,
Deepnarayan
Biswas
,
Giorgio
Rossi
,
Giancarlo
Panaccione
,
Annabella
Selloni
Diamond Proposal Number(s):
[16041]
Abstract: Two-dimensional (2D) metallic states induced by oxygen vacancies (
V
O
s
) at oxide surfaces and interfaces provide opportunities for the development of advanced applications, but the ability to control the behavior of these states is still limited. We used angle resolved photoelectron spectroscopy combined with density-functional theory (DFT) to study the reactivity of
V
O
-induced states at the (001) surface of anatase
TiO
2
, where both 2D metallic and deeper lying in-gap states (IGs) are observed. The 2D and IG states exhibit remarkably different evolutions when the surface is exposed to molecular
O
2
: while IGs are almost completely quenched, the metallic states are only weakly affected. DFT calculations indeed show that the IGs originate from surface
V
O
s
and remain localized at the surface, where they can promptly react with
O
2
. In contrast, the metallic states originate from subsurface vacancies whose migration to the surface for recombination with
O
2
is kinetically hindered on anatase
TiO
2
(001), thus making them much less sensitive to oxygen dosing.
|
Feb 2020
|
|
I09-Surface and Interface Structural Analysis
|
Paul C.
Rogge
,
Ravini U.
Chandrasena
,
Antonio
Cammarata
,
Robert J.
Green
,
Padraic
Shafer
,
Benjamin M.
Lefler
,
Amanda
Huon
,
Arian
Arab
,
Elke
Arenholz
,
Ho Nyung
Lee
,
Tien-lin
Lee
,
Slavomir
Nemsak
,
James M.
Rondinelli
,
Alexander
Gray
,
Steven J.
May
Diamond Proposal Number(s):
[17824]
Abstract: We investigated the metal-insulator transition for epitaxial thin films of the perovskite CaFeO3, a material with a significant oxygen ligand hole contribution to its electronic structure. We find that biaxial tensile and compressive strain suppress the metal-insulator transition temperature. By combining hard x-ray photoelectron spectroscopy, soft x-ray absorption spectroscopy, and density functional calculations, we resolve the element-specific changes to the electronic structure across the metal-insulator transition. We demonstrate that the Fe sites undergo no observable spectroscopic change between the metallic and insulating states, whereas the O electronic configuration undergoes significant changes. This strongly supports the bond-disproportionation model of the metal-insulator transition for CaFeO3 and highlights the importance of ligand holes in its electronic structure. By sensitively measuring the ligand hole density, however, we find that it increases by ∼5–10% in the insulating state, which we ascribe to a further localization of electron charge on the Fe sites. These results provide detailed insight into the metal-insulator transition of negative charge transfer compounds and should prove instructive for understanding metal-insulator transitions in other late transition metal compounds such as the nickelates.
|
Jan 2018
|
|
I09-Surface and Interface Structural Analysis
|
Matthew J.
Wahila
,
Galo
Paez
,
Christopher N.
Singh
,
Anna
Regoutz
,
Shawn
Sallis
,
Mateusz J.
Zuba
,
Jatinkumar
Rana
,
M. Brooks
Tellekamp
,
Jos E.
Boschker
,
Toni
Markurt
,
Jack E. N.
Swallow
,
Leanne A. H.
Jones
,
Tim D.
Veal
,
Wanli
Yang
,
Tien-lin
Lee
,
Fanny
Rodolakis
,
Jerzy T.
Sadowski
,
David
Prendergast
,
Wei-cheng
Lee
,
W. Alan
Doolittle
,
Louis F. J.
Piper
Diamond Proposal Number(s):
[20647, 21430]
Abstract: The metal-insulator transition of
NbO
2
is thought to be important for the functioning of recent niobium oxide-based memristor devices, and is often described as a Mott transition in these contexts. However, the actual transition mechanism remains unclear, as current devices actually employ electroformed
NbO
x
that may be inherently different to crystalline
NbO
2
. We report on our synchrotron x-ray spectroscopy and density-functional-theory study of crystalline, epitaxial
NbO
2
thin films grown by pulsed laser deposition and molecular beam epitaxy across the metal-insulator transition at
∼
810
∘
C
. The observed spectral changes reveal a second-order Peierls transition driven by a weakening of Nb dimerization without significant electron correlations, further supported by our density-functional-theory modeling. Our findings indicate that employing crystalline
NbO
2
as an active layer in memristor devices may facilitate analog control of the resistivity, whereby Joule-heating can modulate Nb-Nb dimer distance and consequently control the opening of a pseudogap.
|
Jul 2019
|
|