I04-Macromolecular Crystallography
|
Martina
Durcik
,
Andrej Emanuel
Cotman
,
Žan
Toplak
,
Štefan
Možina
,
Žiga
Skok
,
Petra Eva
Szili
,
Márton
Czikkely
,
Elvin
Maharramov
,
Thu Hien
Vu
,
Maria Vittoria
Piras
,
Nace
Zidar
,
Janez
Ilaš
,
Anamarija
Zega
,
Jurij
Trontelj
,
Luis A.
Pardo
,
Diarmaid
Hughes
,
Douglas
Huseby
,
Tália
Berruga-Fernández
,
Sha
Cao
,
Ivailo
Simoff
,
Richard
Svensson
,
Sergiy V.
Korol
,
Zhe
Jin
,
Francisca
Vicente
,
Maria C.
Ramos
,
Julia E. A.
Mundy
,
Anthony
Maxwell
,
Clare E. M.
Stevenson
,
David M.
Lawson
,
Björn
Glinghammar
,
Eva
Sjöström
,
Martin
Bohlin
,
Joanna
Oreskär
,
Sofie
Alvér
,
Guido V.
Janssen
,
Geert Jan
Sterk
,
Danijel
Kikelj
,
Csaba
Pal
,
Tihomir
Tomašič
,
Lucija
Peterlin Mašič
Diamond Proposal Number(s):
[25108]
Open Access
Abstract: A new series of dual low nanomolar benzothiazole inhibitors of bacterial DNA gyrase and topoisomerase IV were developed. The resulting compounds show excellent broad-spectrum antibacterial activities against Gram-positive Enterococcus faecalis, Enterococcus faecium and multidrug resistant (MDR) Staphylococcus aureus strains [best compound minimal inhibitory concentrations (MICs): range, <0.03125–0.25 μg/mL] and against the Gram-negatives Acinetobacter baumannii and Klebsiella pneumoniae (best compound MICs: range, 1–4 μg/mL). Lead compound 7a was identified with favorable solubility and plasma protein binding, good metabolic stability, selectivity for bacterial topoisomerases, and no toxicity issues. The crystal structure of 7a in complex with Pseudomonas aeruginosa GyrB24 revealed its binding mode at the ATP-binding site. Expanded profiling of 7a and 7h showed potent antibacterial activity against over 100 MDR and non-MDR strains of A. baumannii and several other Gram-positive and Gram-negative strains. Ultimately, in vivo efficacy of 7a in a mouse model of vancomycin-intermediate S. aureus thigh infection was also demonstrated.
|
Mar 2023
|
|
I03-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[17212, 23269]
Open Access
Abstract: L1 is a dizinc subclass B3 metallo-β-lactamase (MBL) that hydrolyzes most β-lactam antibiotics and is a key resistance determinant in the Gram-negative pathogen Stenotrophomonas maltophilia, an important cause of nosocomial infections in immunocompromised patients. L1 is not usefully inhibited by MBL inhibitors in clinical trials, underlying the need for further studies on L1 structure and mechanism. We describe kinetic studies and crystal structures of L1 in complex with hydrolyzed β-lactams from the penam (mecillinam), cephem (cefoxitin/cefmetazole) and carbapenem (tebipenem, doripenem and panipenem) classes. Despite differences in their structures, all the β-lactam-derived products hydrogen bond to Tyr33, Ser221 and Ser225 and are stabilized by interactions with a conserved hydrophobic pocket. The carbapenem products were modelled as Δ1-imines, with (2S)-stereochemistry. Their binding mode is determined by the presence of a 1β-methyl substituent: the Zn-bridging hydroxide either interacts with the C-6 hydroxyethyl group (1β-hydrogen-containing carbapenems), or is displaced by the C-6 carboxylate (1β-methyl-containing carbapenems). Unexpectedly, the mecillinam product is a rearranged N-formyl amide rather than penicilloic acid, with the N-formyl oxygen interacting with the Zn-bridging hydroxide. NMR studies imply mecillinam rearrangement can occur non-enzymatically in solution. Cephem-derived imine products are bound with (3R)-stereochemistry and retain their 3’ leaving groups, likely representing stable endpoints, rather than intermediates, in MBL-catalyzed hydrolysis. Our structures show preferential complex formation by carbapenem- and cephem-derived species protonated on the equivalent (β) faces, and so identify interactions that stabilize diverse hydrolyzed antibiotics. These results may be exploited in developing antibiotics, and β-lactamase inhibitors, that form long-lasting complexes with dizinc MBLs.
|
Mar 2023
|
|
NONE-No attached Diamond beamline
|
Open Access
Abstract: Fragment-based lead discovery (FBLD) is a powerful application for developing ligands as modulators of disease targets. This approach strategy involves identification of interactions between low-molecular weight compounds (100–300 Da) and their putative targets, often with low affinity (KD ~0.1–1 mM) interactions. The focus of this screening methodology is to optimize and streamline identification of fragments with higher ligand efficiency (LE) than typical high-throughput screening. The focus of this review is on the last half decade of fragment-based drug discovery strategies that have been used for antimicrobial drug discovery.
|
Feb 2023
|
|
I03-Macromolecular Crystallography
|
Open Access
Abstract: Acinetobacter baumannii is a gram-negative bacterial pathogen that causes challenging nosocomial infections. β-lactam targeting of penicillin-binding protein (PBP)–mediated cell wall peptidoglycan (PG) formation is a well-established antimicrobial strategy. Exposure to carbapenems or zinc (Zn)-deprived growth conditions leads to a rod-to-sphere morphological transition in A. baumannii, an effect resembling that caused by deficiency in the RodA–PBP2 PG synthesis complex required for cell wall elongation. While it is recognized that carbapenems preferentially acylate PBP2 in A. baumannii and therefore block the transpeptidase function of the RodA–PBP2 system, the molecular details underpinning cell wall elongation inhibition upon Zn starvation remain undefined. Here, we report the X-ray crystal structure of A. baumannii PBP2, revealing an unexpected Zn coordination site in the transpeptidase domain required for protein stability. Mutations in the Zn-binding site of PBP2 cause a loss of bacterial rod shape and increase susceptibility to β-lactams, therefore providing a direct rationale for cell wall shape maintenance and Zn homeostasis in A. baumannii. Furthermore, the Zn-coordinating residues are conserved in various β- and γ-proteobacterial PBP2 orthologs, consistent with a widespread Zn-binding requirement for function that has been previously unknown. Due to the emergence of resistance to virtually all marketed antibiotic classes, alternative or complementary antimicrobial strategies need to be explored. These findings offer a perspective for dual inhibition of Zn-dependent PG synthases and metallo-β-lactamases by metal chelating agents, considered the most sought-after adjuvants to restore β-lactam potency against gram-negative bacteria.
|
Feb 2023
|
|
I24-Microfocus Macromolecular Crystallography
|
Diamond Proposal Number(s):
[29990]
Open Access
Abstract: Since 2000, some thirteen quinolones and fluoroquinolones have been developed and have come to market. The quinolones, one of the most successful classes of antibacterial drugs, stabilize DNA cleavage complexes with DNA gyrase and topoisomerase IV (topo IV), the two bacterial type IIA topoisomerases. The dual targeting of gyrase and topo IV helps decrease the likelihood of resistance developing. Here, we report on a 2.8 Å X-ray crystal structure, which shows that zoliflodacin, a spiropyrimidinetrione antibiotic, binds in the same DNA cleavage site(s) as quinolones, sterically blocking DNA religation. The structure shows that zoliflodacin interacts with highly conserved residues on GyrB (and does not use the quinolone water–metal ion bridge to GyrA), suggesting it may be more difficult for bacteria to develop target mediated resistance. We show that zoliflodacin has an MIC of 4 µg/mL against Acinetobacter baumannii (A. baumannii), an improvement of four-fold over its progenitor QPT-1. The current phase III clinical trial of zoliflodacin for gonorrhea is due to be read out in 2023. Zoliflodacin, together with the unrelated novel bacterial topoisomerase inhibitor gepotidacin, is likely to become the first entirely novel chemical entities approved against Gram-negative bacteria in the 21st century. Zoliflodacin may also become the progenitor of a new safer class of antibacterial drugs against other problematic Gram-negative bacteria.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
I04-1-Macromolecular Crystallography (fixed wavelength)
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Andrej Emanuel
Cotman
,
Martina
Durcik
,
Davide
Benedetto Tiz
,
Federica
Fulgheri
,
Daniela
Secci
,
Maša
Sterle
,
Štefan
Možina
,
Žiga
Skok
,
Nace
Zidar
,
Anamarija
Zega
,
Janez
Ilaš
,
Lucija
Peterlin Mašič
,
Tihomir
Tomašič
,
Diarmaid
Hughes
,
Douglas L.
Huseby
,
Sha
Cao
,
Linnéa
Garoff
,
Talía
Berruga Fernández
,
Paraskevi
Giachou
,
Lisa
Crone
,
Ivailo
Simoff
,
Richard
Svensson
,
Bryndis
Birnir
,
Sergiy V.
Korol
,
Zhe
Jin
,
Francisca
Vicente
,
Maria C.
Ramos
,
Mercedes
De La Cruz
,
Björn
Glinghammar
,
Lena
Lenhammar
,
Sara R.
Henderson
,
Julia E. A.
Mundy
,
Anthony
Maxwell
,
Claren E. M.
Stevenson
,
David M.
Lawson
,
Guido V.
Janssen
,
Geert Jan
Sterk
,
Danijel
Kikelj
Diamond Proposal Number(s):
[18565, 25108]
Open Access
Abstract: We have developed compounds with a promising activity against Acinetobacter baumannii and Pseudomonas aeruginosa, which are both on the WHO priority list of antibiotic-resistant bacteria. Starting from DNA gyrase inhibitor 1, we identified compound 27, featuring a 10-fold improved aqueous solubility, a 10-fold improved inhibition of topoisomerase IV from A. baumannii and P. aeruginosa, a 10-fold decreased inhibition of human topoisomerase IIα, and no cross-resistance to novobiocin. Cocrystal structures of 1 in complex with Escherichia coli GyrB24 and (S)-27 in complex with A. baumannii GyrB23 and P. aeruginosa GyrB24 revealed their binding to the ATP-binding pocket of the GyrB subunit. In further optimization steps, solubility, plasma free fraction, and other ADME properties of 27 were improved by fine-tuning of lipophilicity. In particular, analogs of 27 with retained anti-Gram-negative activity and improved plasma free fraction were identified. The series was found to be nongenotoxic, nonmutagenic, devoid of mitochondrial toxicity, and possessed no ion channel liabilities.
|
Jan 2023
|
|
I03-Macromolecular Crystallography
|
Andrius
Jasilionis
,
Magdalena
Plotka
,
Lei
Wang
,
Sebastian
Dorawa
,
Joanna
Lange
,
Hildegard
Watzlawick
,
Tom
Van Den Bergh
,
Bas
Vroling
,
Josef
Altenbuchner
,
Anna-Karina
Kaczorowska
,
Ehmke
Pohl
,
Tadeusz
Kaczorowski
,
Eva
Nordberg Karlsson
,
Stefanie
Freitag-Pohl
Diamond Proposal Number(s):
[18598]
Abstract: Bacteriophages encode a wide variety of cell wall disrupting enzymes that aid the viral escape in the final stages of infection. These lytic enzymes have accumulated notable interest due to their potential as novel antibacterials for infection treatment caused by multiple-drug resistant bacteria. Here, the detailed functional and structural characterization of Thermus parvatiensis prophage peptidoglycan lytic amidase AmiP, a globular Amidase_3 type lytic enzyme adapted to high temperatures is presented. The sequence and structure comparison with homologous lytic amidases reveals the key adaptation traits that ensure the activity and stability of AmiP at high temperatures. The crystal structure determined at a resolution of 1.8 Å displays a compact α/β-fold with multiple secondary structure elements omitted or shortened compared to protein structures of similar proteins. The functional characterisation of AmiP demonstrates high efficiency of catalytic activity and broad substrate specificity towards thermophilic and mesophilic bacteria strains containing Orn-type or DAP-type peptidoglycan. The here presented AmiP constitutes the most thermoactive and ultrathermostable Amidase_3 type lytic enzyme biochemically characterised with a temperature optimum at 85 °C. The extraordinary high melting temperature Tm 102.6 °C confirms fold stability up to approximately 100 °C. Furthermore, AmiP is shown to be more active over the alkaline pH range with pH optimum at pH 8.5 and tolerates NaCl up to 300 mM with the activity optimum at 25 mM NaCl. This set of beneficial characteristics suggests that AmiP can be further exploited in biotechnology.
|
Jan 2023
|
|
I04-Macromolecular Crystallography
|
Alice
Legru
,
Federica
Verdirosa
,
Yen
Vo-Hoang
,
Giusy
Tassone
,
Filippo
Vascon
,
Caitlyn A.
Thomas
,
Filomena
Sannio
,
Giuseppina
Corsica
,
Manuela
Benvenuti
,
Georges
Feller
,
Rémi
Coulon
,
Francesca
Marcoccia
,
Savannah Rowane
Devente
,
Ezeddine
Bouajila
,
Catherine
Piveteau
,
Fabrice
Leroux
,
Rebecca
Deprez-Poulain
,
Benoît
Deprez
,
Patricia
Licznar-Fajardo
,
Michael W.
Crowder
,
Laura
Cendron
,
Cecilia
Pozzi
,
Stefano
Mangani
,
Jean-Denis
Docquier
,
Jean-François
Hernandez
,
Laurent
Gavara
Diamond Proposal Number(s):
[21741]
Abstract: Metallo-β-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10–30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.
|
Nov 2022
|
|
B21-High Throughput SAXS
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[16258]
Open Access
Abstract: Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.
|
Oct 2022
|
|
I04-1-Macromolecular Crystallography (fixed wavelength)
|
Open Access
Abstract: Bacteroides fragilis is an abundant commensal component of the healthy human colon. However, under dysbiotic conditions, enterotoxigenic B. fragilis (ETBF) may arise and elicit diarrhea, anaerobic bacteremia, inflammatory bowel disease, and colorectal cancer. Most worrisome, ETBF is resistant to many disparate antibiotics. ETBF's only recognized specific virulence factor is a zinc-dependent metallopeptidase (MP) called B. fragilis toxin (BFT) or fragilysin, which damages the intestinal mucosa and triggers disease-related signaling mechanisms. Thus, therapeutic targeting of BFT is expected to limit ETBF pathogenicity and improve the prognosis for patients. We focused on one of the naturally occurring BFT isoforms, BFT-3, and managed to repurpose several approved drugs as BFT-3 inhibitors through a combination of biophysical, biochemical, structural, and cellular techniques. In contrast to canonical MP inhibitors, which target the active site of mature enzymes, these effectors bind to a distal allosteric site in the proBFT-3 zymogen structure, which stabilizes a partially unstructured, zinc-free enzyme conformation by shifting a zinc-dependent disorder-to-order equilibrium. This yields proBTF-3 incompetent for autoactivation, thus ablating hydrolytic activity of the mature toxin. Additionally, a similar destabilizing effect is observed for the activated protease according to biophysical and biochemical data. Our strategy paves a novel way for the development of highly specific inhibitors of ETBF-mediated enteropathogenic conditions.
|
Oct 2022
|
|