I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[21663]
Open Access
Abstract: Atmospheric aerosol hygroscopicity and reactivity play key roles in determining an aerosol's fate and are strongly affected by its composition and physical properties. Fatty acids are surfactants commonly found in organic aerosol emissions. They form a wide range of different nanostructures dependent on water content and mixture composition. In this study we follow nano-structural changes in mixtures frequently found in urban organic aerosol emissions, i.e. oleic acid, sodium oleate and fructose, during humidity change and exposure to the atmospheric oxidant ozone. Addition of fructose altered the nanostructure by inducing molecular arrangements with increased surfactant–water interface curvature. Small-angle X-ray scattering (SAXS) was employed for the first time to derive the hygroscopicity of each nanostructure, thus addressing a current gap in knowledge by measuring time- and humidity-resolved changes in nano-structural parameters. We found that hygroscopicity is directly linked to the specific nanostructure and is dependent on the nanostructure geometry. Reaction with ozone revealed a clear nanostructure–reactivity trend, with notable differences between the individual nanostructures investigated. Simultaneous Raman microscopy complementing the SAXS studies revealed the persistence of oleic acid even after extensive oxidation. Our findings demonstrate that self-assembly of fatty acid nanostructures can significantly impact two key atmospheric aerosol processes: water uptake and chemical reactivity, thus directly affecting the atmospheric lifetime of these materials. This could have significant impacts on both urban air quality (e.g. protecting harmful urban emissions from atmospheric degradation and therefore enabling their long-range transport) and climate (e.g. affecting cloud formation), with implications for human health and well-being.
|
Dec 2024
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[17791, 20541, 23096, 21663, 23852]
Open Access
Abstract: Aerosols are ubiquitous in the atmosphere. Outdoors, they take part in the climate system via cloud droplet formation, and they contribute to indoor and outdoor air pollution, impacting human health and man-made environmental change. In the indoor environment, aerosols are formed by common activities such as cooking and cleaning. People can spend up to ca. 90% of their time indoors, especially in the western world. Therefore, there is a need to understand how indoor aerosols are processed in addition to outdoor aerosols.
Surfactants make significant contributions to aerosol emissions, with sources ranging from cooking to sea spray. These molecules alter the cloud droplet formation potential by changing the surface tension of aqueous droplets and thus increasing their ability to grow. They can also coat solid surfaces such as windows (“window grime”) and dust particles. Such surface films are more important indoors due to the higher surface-to-volume ratio compared to the outdoor environment, increasing the likelihood of surface film–pollutant interactions.
A common cooking and marine emission, oleic acid, is known to self-organize into a range of 3-D nanostructures. These nanostructures are highly viscous and as such can impact the kinetics of aerosol and film aging (i.e., water uptake and oxidation). There is still a discrepancy between the longer atmospheric lifetime of oleic acid compared with laboratory experiment-based predictions.
We have created a body of experimental and modeling work focusing on the novel proposition of surfactant self-organization in the atmosphere. Self-organized proxies were studied as nanometer-to-micrometer films, levitated droplets, and bulk mixtures. This access to a wide range of geometries and scales has resulted in the following main conclusions: (i) an atmospherically abundant surfactant can self-organize into a range of viscous nanostructures in the presence of other compounds commonly encountered in atmospheric aerosols; (ii) surfactant self-organization significantly reduces the reactivity of the organic phase, increasing the chemical lifetime of these surfactant molecules and other particle constituents; (iii) while self-assembly was found over a wide range of conditions and compositions, the specific, observed nanostructure is highly sensitive to mixture composition; and (iv) a “crust” of product material forms on the surface of reacting particles and films, limiting the diffusion of reactive gases to the particle or film bulk and subsequent reactivity. These findings suggest that hazardous, reactive materials may be protected in aerosol matrixes underneath a highly viscous shell, thus extending the atmospheric residence times of otherwise short-lived species.
|
Sep 2023
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[23096]
Abstract: Aerosols contribute to ambient air pollution and, via processes such as cloud droplet formation, affect air quality and climate. Organic compounds often play a major role in aerosol composition, varying with time, location, season, and environment. Cooking food releases fatty acids into the air, and cooking emissions contribute around 10% to UK emissions of PM2.5 (aerosols up to two and a half microns wide). These aerosol particles can be deposited onto surfaces such as windows. A thin, layered film of material builds up over time, creating a persistent crust that is only slowly broken down by other chemicals in the atmosphere. In work recently selected as the best 2022 paper in Environmental Science: Atmospheres, a team led by researchers at the University of Birmingham created ultra-thin films, just a few tens of nanometres in thickness, approximating real-world pollution samples. Using X-ray and neutron techniques to study the nanoscale composition of the films and the changes in their surface structures as they aged, the researchers found that the self-organised layered structure can trap toxic pollutants and form a barrier that can prevent their breakdown. They also showed that the film's surface becomes rougher and attracts more water from humidity, an effect with implications for the formation and lifetime of aerosols in the atmosphere.
|
Sep 2023
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[23852, 17791]
Open Access
Abstract: Laboratory studies on levitated particles of atmospheric aerosol proxies have provided significant contributions to our understanding of aerosol processes. We present an experimental method combining acoustic levitation with polarising optical microscopy (AL-POM) to probe optically birefringent particles, such as the nanostructured surfactant atmospheric aerosol proxy studied here. Birefringent particles were subjected to a step increase in humidity. A decrease in birefringence was measured over time as a result of a nanostructure change, confirmed by complementary synchrotron X-ray scattering. A multi-layer water uptake model was created and fitted to the experimental data, revealing a water diffusion coefficient increase by ca. 5–6 orders of magnitude upon phase transition. This has implications for the timescale of water uptake in surfactant-containing aerosols and their atmospheric lifetimes. This experimental setup has strong potential to be used in conjunction with other levitation methods and in different contexts concerning birefringent materials such as crystallisation.
|
Sep 2023
|
|
I22-Small angle scattering & Diffraction
|
Abstract: Atmospheric aerosols are key components of the atmosphere. They nucleate cloud droplets and facilitate the transport of particle-bound components around the atmosphere. This has an impact on the climate and air quality. The phase state of atmospheric aerosols can affect their ability to form cloud droplets and their atmospheric lifetime. Organic compounds are found in aerosol emissions. Some of these compounds, such as fatty acids, are surface active and can affect the cloud formation potential of an aerosol particle. Specifically, oleic acid is an unsaturated fatty acid found as a major component of cooking emissions. Recently, a study on an oleic acid aerosol proxy has shown that the formation of viscous 3-D self-assembled nanostructures is possible, affecting oleic acid reactivity.
This thesis takes this novel concept of nanostructure formation in atmospheric aerosol proxies and aims to explore what the potential atmospheric impact could be. This was done by applying X-ray scattering techniques to levitated droplets and surface coatings of the fatty acid aerosol proxy. Development of a method for determining reaction kinetics from these measurements is presented along with a first quantification of the effect of self-assembly on reaction kinetics, later being extended to different nanostructures. Experiments on reactivity and water uptake described here probe the proxy from nanometre-scale films to micrometre-scale droplets and bulk mixtures, demonstrating the versatility of the range of experimental techniques used to probe the proxy. The atmospheric implications of nanostructure formation are discussed via numerical modelling and observations from experiments on these proxies, highlighting the potential impact on aerosol atmospheric lifetime and implications for the atmosphere.
|
Oct 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[28020, 15121]
Open Access
Abstract: The composition of atmospheric aerosols varies with time, season, location, and environment. This affects key aerosol properties such as hygroscopicity and reactivity, influencing the aerosol’s impact on the climate and air quality. The organic fraction of atmospheric aerosol emissions often contains surfactant material, such as fatty acids. These molecules are known to form three-dimensional nanostructures in contact with water. Different nanostructures have marked differences in viscosity and diffusivity that are properties whose understanding is essential when considering an aerosol’s atmospheric impact. We have explored a range of nanostructures accessible to the organic surfactant oleic acid (commonly found in cooking emissions), simulating variation that is likely to happen in the atmosphere. This was achieved by changing the amount of water, aqueous phase salinity and by addition of other commonly coemitted compounds: sugars and stearic acid (the saturated analogue of oleic acid). The nanostructure was observed by both synchrotron and laboratory small/wide angle X-ray scattering (SAXS/WAXS) and found to be sensitive to the proxy composition. Additionally, the spacing between repeat units in these nanostructures was water content dependent (i.e., an increase from 41 to 54 Å in inverse hexagonal phase d-spacing when increasing the water content from 30 to 50 wt %), suggesting incorporation of water within the nanostructure. A significant decrease in mixture viscosity was also observed with increasing water content from ∼104 to ∼102 Pa s when increasing the water content from 30 to 60 wt %. Time-resolved SAXS experiments on levitated droplets of this proxy confirm the phase changes observed in bulk phase mixtures and demonstrate that coexistent nanostructures can form in droplets. Aerosol compositional and subsequent nanostructural changes could affect aerosol processes, leading to an impact on the climate and urban air pollution.
|
Sep 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[20839]
Abstract: Oceans represent one of the world’s largest reservoirs of organic carbon. Regulating the organic carbon reservoir is critical to the global carbon cycle and is vital to supporting life on Earth; if not maintained this would have substantial impact on the levels of oxygen and carbon dioxide in the Earth’s atmosphere. Minerals are known to protect organic carbon from degradation, conserving organic carbon in soils and sediments. However, there is a lack of understanding of how this protective mechanism actually works.
In recent work published in Nature Communications, a team led by Professor Caroline Peacock, based at University of Leeds School of Earth and Environment, set out to investigate the mechanism behind the conservation of organic carbon in the world’s oceans. The team adopted a multi-faceted approach, incorporating Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy at Diamond’s I08 beamline, to demonstrate that adsorption of organic carbon by clay minerals limits its availability to methane-producing microbes, restricting the conversion of organic carbon into methane. The team’s remarkable discovery sheds light on the mechanism responsible for preserving the oceanic organic carbon reservoir and may have profound implications for our existing understanding of the global carbon cycle.
|
Jun 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[10327, 12760, 22244]
Open Access
Abstract: Mineral dust is the largest source of aerosol iron (Fe) to the offshore global ocean, but acidic processing of coal fly ash (CFA) in the atmosphere could be an important source of soluble aerosol Fe. Here, we determined the Fe speciation and dissolution kinetics of CFA from Aberthaw (United Kingdom), Krakow (Poland), and Shandong (China) in solutions which simulate atmospheric acidic processing. In CFA PM10 fractions, 8 %–21.5 % of the total Fe was found to be hematite and goethite (dithionite-extracted Fe), and 2 %–6.5 % was found to be amorphous Fe (ascorbate-extracted Fe), while magnetite (oxalate-extracted Fe) varied from 3 %–22 %. The remaining 50 %–87 % of Fe was associated with other Fe-bearing phases, possibly aluminosilicates. High concentrations of ammonium sulfate ((NH4)2SO4), often found in wet aerosols, increased Fe solubility of CFA up to 7 times at low pH (2–3). The oxalate effect on the Fe dissolution rates at pH 2 varied considerably, depending on the samples, from no impact for Shandong ash to doubled dissolution for Krakow ash. However, this enhancement was suppressed in the presence of high concentrations of (NH4)2SO4. Dissolution of highly reactive (amorphous) Fe was insufficient to explain the high Fe solubility at low pH in CFA, and the modelled dissolution kinetics suggest that other Fe-bearing phases such as magnetite may also dissolve relatively rapidly under acidic conditions. Overall, Fe in CFA dissolved up to 7 times faster than in a Saharan dust precursor sample at pH 2. Based on these laboratory data, we developed a new scheme for the proton- and oxalate-promoted Fe dissolution of CFA, which was implemented into the global atmospheric chemical transport model IMPACT (Integrated Massively Parallel Atmospheric Chemical Transport). The revised model showed a better agreement with observations of Fe solubility in aerosol particles over the Bay of Bengal, due to the initial rapid release of Fe and the suppression of the oxalate-promoted dissolution at low pH. The improved model enabled us to predict sensitivity to a more dynamic range of pH changes, particularly between anthropogenic combustion and biomass burning aerosols.
|
May 2022
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[23096]
Open Access
Abstract: Atmospheric aerosol particles can be coated with organic material, impacting on aerosol atmospheric lifetime and urban air quality. Coatings of organic material are also found on indoor surfaces such as window glass. Oleic acid is a fatty acid surfactant which is abundant in cooking and marine aerosol emissions. Under ambient conditions it can self-assemble into lamellar bilayers (stacks) with its sodium salt. We found that nano-scale oleic acid-sodium oleate films spin-coated onto solid silicon substrates form a mixed-phase area of lamellar stacks and amorphous film. The coatings were subjected to simulated atmospheric ageing (ozonolysis and humidity changes) while the surface structure was followed by neutron reflectometry. We found that the orientation of lamellar stacks, which is known to affect the diffusivity of small molecules through them, was sensitive to humidity both in oxidised and pristine films. Lamellar bilayer stacks in oxidised films acquired ~11-fold more water in humid conditions (> 80 % relative humidity) compared to the unoxidised film, demonstrating a significant increase in film hygroscopicity after oxidation. Lamellar stacks, consisting only of starting materials, persisted at the end of simulated atmospheric ageing. These findings for atmospherically relevant nano-scale films corroborate previous work on micrometre-scale layers, thus demonstrating that fatty acid self-assembly could significantly increase the atmospheric lifetime of these molecules. The persistence of such semi-solid surfactant arrangements in the atmosphere has implications for the climate as well as urban and indoor air pollution.
|
May 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[20839]
Open Access
Abstract: Minerals are widely proposed to protect organic carbon from degradation and thus promote the persistence of organic carbon in soils and sediments, yet a direct link between mineral adsorption and retardation of microbial remineralisation is often presumed and a mechanistic understanding of the protective preservation hypothesis is lacking. We find that methylamines, the major substrates for cryptic methane production in marine surface sediment, are strongly adsorbed by marine sediment clays, and that this adsorption significantly reduces their concentrations in the dissolved pool (up to 40.2 ± 0.2%). Moreover, the presence of clay minerals slows methane production and reduces final methane produced (up to 24.9 ± 0.3%) by a typical methylotrophic methanogen—Methanococcoides methylutens TMA-10. Near edge X-ray absorption fine structure spectroscopy shows that reversible adsorption and occlusive protection of methylamines in clay interlayers are responsible for the slow-down and reduction in methane production. Here we show that mineral-OC interactions strongly control methylotrophic methanogenesis and potentially cryptic methane cycling in marine surface sediments.
|
May 2022
|
|