B18-Core EXAFS
|
Diamond Proposal Number(s):
[22225]
Open Access
Abstract: Aiming at knowledge-driven design of novel metal-ceria catalysts for automotive exhaust abatement, current efforts mostly pertain to the synthesis and understanding of well-defined systems. In contrast, technical catalysts are often heterogenous in their metal speciation. Here, we unveiled rich structural dynamics of a conventional impregnated Pd/CeO2 catalyst during CO oxidation. In situ X-ray photoelectron spectroscopy and operando X-ray absorption spectroscopy revealed presence of metallic and oxidic Pd states during the reaction. Using transient operando infrared spectroscopy, we probed the nature and reactivity of the surface intermediates involved in CO oxidation. We found that while low-temperature activity is associated with sub-oxidized and interfacial Pd sites, the reaction at elevated temperatures involves metallic Pd. These results highlight the utility of the multi-technique operando approach for establishing structure-activity relationships of technical catalysts.
|
Mar 2022
|
|
B18-Core EXAFS
|
Abstract: Ceria (cerium oxide) based materials have been widely used for catalytic applications including; fluid catalytic cracking, water gas shift reactions, solid oxide fuel cells and automotive catalytic after-treatment. It has often been the material of choice for supporting precious metals in many of the applications previously mentioned, as it can provide a high surface area and has excellent redox properties. This enables ceria to absorb oxygen into its structure and release it again, to facilitate oxidation reactions. Cerium is also one of the most abundant rare earth metals, making it a relatively cost effective material to use in industrial applications. For these reasons, cerium oxide remains to be a material of high interest for the development of cost-effective industrial catalysts and is, therefore, the focal material for this work.
Modern internal combustion engine technology is being directed towards lean burn operation, involving higher air-fuel ratios in order to improve thermal efficiency. In turn, the operating temperature of modern engines is being reduced, providing less of the heat energy required to activate the catalysts in the after-treatment system. Therefore, in order to mitigate the emission from efficient lean burn engines and comply with emission regulations, the requirement for low temperature automotive catalysts is apparent. The objective of this work is to develop effective ceria based materials for the application of modern automotive after-treatment catalysis.
The first approach is the use of a novel method for the preparation of a mixed oxide catalysts, which show high activity for CO and HC oxidation at low temperature. The preparation of ceria/manganese mixed oxide catalysts using a novel synthesis method has been studied and the materials were characterised to gain insights of their structure and morphology. Temperature programmed reactions using a complex mixture of reactants, before and after hydrothermal aging, were carried out to investigate their application for automotive emission control. The results from these studies were compared with more conventional ceria based materials that are often used for automotive after-treatment.
A second approach used in this work is a post synthesis technique for the surface modification of ceria catalysts using ion bombardment. This technique was carried out on a commercially sourced, model catalyst. A Pt-CeO2/ZrO2 was treated with nitrogen ion irradiation and the effects of the adjustable parameters of the ion beam were investigated by carrying out temperature programmed reactions. The samples were also extensively characterised using XAFS and XPS techniques to understand the effects of the ion beam treatment on the structure, morphology and Pt dispersion of the materials.
|
Dec 2021
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[20841, 23858]
Abstract: Battery electrodes are composed of many millions of particles. Lithium-ions entering and leaving these particles charge and discharge the battery. Defects in the particles reduce the battery’s capacity. This would impact electric vehicle range in automotive applications, for example, requiring drivers to stop more frequently to recharge. Therefore, it is crucial to investigate which particles
contain defects, whether different types of defects exist, and how we might prevent them forming.
Electrode particles are spheres with diameters on the order of tens of microns (smaller than a human hair). Due to their small size, investigating their properties requires high-resolution specialist facilities, such as those at the Hard X-Ray Nanoprobe beamline (I14) at Diamond Light Source. The defects have complex origins, requiring the use of multiple investigation techniques at once, for which I14 was specifically designed.
Batteries that are nickel-based (around 80%), with manganese and cobalt making up the other 20%, are of particular interest to the automotive industry. By analysing various particles at I14 and comparing the results with data collected in the labs at University College London (UCL), researchers found a correlation between the manganese content and the ordering of the particle’s crystals. However, they attributed the amount of cracking within the particle to the crystal orientations. Preventing the manganese from leaving the particles may maintain the crystal ordering. Aligning the crystals, or making larger single crystals, may avoid - or at least delay - particle cracking. Overcoming these issues would allow electric vehicles to travel for longer before needing to recharge.
|
Jul 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[22225]
Abstract: In recent years, noble metals atomically dispersed on solid oxide supports have become a frontier of heterogeneous catalysis. In pursuit of an ultimate atom efficiency, the stability of single-atom catalysts is pivotal. Here we compare two Pd/CeO2 single-atom catalysts that are active in low-temperature CO oxidation and display drastically different structural dynamics under the reaction conditions. These catalysts were obtained by conventional impregnation on hydrothermally synthesized CeO2 and one-step flame spray pyrolysis. The oxidized Pd atoms in the impregnated catalyst were prone to reduction and sintering during CO oxidation, whereas they remained intact on the surface of the Pd-doped CeO2 derived by flame spray pyrolysis. A detailed in situ characterization linked the stability of the Pd single atoms to the reducibility of the Pd–CeO2 interface and the extent of reverse oxygen spillover. To understand the chemical phenomena that underlie the metal–support interactions is crucial to the rational design of stable single-atom catalysts.
|
Jun 2021
|
|
I13-2-Diamond Manchester Imaging
|
Diamond Proposal Number(s):
[22053]
Abstract: High pressure metal die casting is an extremely dynamic process with widely ranging cooling rates and intensifying pressures, resulting in a wide range of solid fractions and deformation rates simultaneously existing in the same casting. These process parameters and their complex interplay dictate the formation of microstructural solidification defects. In this study, fast synchrotron X-ray imaging experiments simulating high pressure die casting of aluminium alloys were conducted to investigate the effect of solid fraction, loading conditions and semisolid flow on local microstructural inhomogeneity. While most of the existing literature in this field reports speeds up to 10 µm/s for in situ deformation, the present work captures much faster filling and solidification, at speeds closer to 100 µm/s and at different solid fractions. Semisolid deformation of low solid fractions reveals two typical microstructural features: (i) coarser grains in the middle and finer ones near the walls, and (ii) remelting near the solid-liquid interface due to Cu enrichment in the liquid by the flow. Ex situ scans and digital image correlation analysis of the higher solid fraction samples reveal a porosity formation mechanism based on the local state of stresses, microstructure and feeding. Four different characteristics were identified: (i) plug flow, (ii) dead zone (densified mush), (iii) shear and (iv) bulk zones. These insights will be used to develop zone-specific strategies for the numerical modelling of defect formation during die casting.
|
May 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Abstract: Platinum functions exceptionally well as a nanoparticulate catalyst in many important fields, such as in the removal of atmospheric pollutants, but it is scarce, expensive and not always sufficiently durable. Here, we report a perovskite system in which 0.5 wt% Pt is integrated into the support and its subsequent conversion through exsolution to achieve a resilient catalyst. Owing to the instability of most Pt oxides at high temperatures, a thermally stable platinum oxide precursor, barium platinate, was used to preserve the platinum as an oxide during the solid-state synthesis in an approach akin to the Trojan horse legend. By tailoring the procedure, it is possible to produce a uniform equilibrated structure with active emergent Pt nanoparticles strongly embedded in the perovskite surface that display better CO oxidation activity and stability than those of conventionally prepared Pt catalysts. This catalyst was further evaluated for a variety of reactions under realistic test environments—CO and NO oxidation, diesel oxidation catalysis and ammonia slip reactions were investigated.
|
May 2021
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[15151]
Abstract: Hydrothermal degreening and ageing procedures were applied to a tri-metal (Pt-Pd-Rh) fully formulated lean NOX Trap catalyst to evaluate the effects of thermal stress on the performances and structural properties. X-ray absorption fine structure (XAFS) analysis revealed that the average size of the platinum particles was the same after degreening and ageing treatments. The formation of a new phase of alloyed Pt-Pd was observed to increase with the thermal load. The size of the ceria particles also increased after the ageing treatment. NOX storage capacity experiments revealed a substantial decrease of the concentration of active NOX storage sites which correlated with both ageing and degreening protocols. The performances of the treated catalyst were evaluated through spatially resolved (SpaciMS) lean-rich cycles. During the lean phase, the impact of the decrease in storage sites was significant on the aged sample, where an enlargement of the area required to achieve full storage was observed. On the other hand, the regeneration functionalities did not appear to be particularly affected by ageing. Rather, the aged sample showed a decrease of oxygen storage capacity (OSC), which promoted a lower reductant consumption and therefore a quicker and more efficient reduction process. On the other hand, the different distributions of adsorbed species by the end of the lean phase produced greater spread presence of NH3 and NOX slip along the channels of the aged sample during the reduction.
|
Apr 2021
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[20527]
Open Access
Abstract: Hybrid metal extrusion & bonding (HYB) is a joining method that enables solid-state bonding by combining addition of aluminium filler material through continuous extrusion with pressure exerted by a rotating steel tool. This work presents mechanical and microstructural characterisation of a second generation HYB butt joint of aluminium alloy 6082 and structural steel S355. The ultimate tensile strength was measured to be in the range of 184–220 MPa, which corresponds to 60–72% joint efficiency. Digital image correlation analysis of the strain development during tensile testing revealed that root cracks formed, before the final fracture ran close to the aluminium-steel interface. A significant amount of residual aluminium was found on the steel fracture surface, especially in regions that experienced higher pressure during joining. Scanning and transmission electron microscopy revealed that the bond strength could be attributed to a combination of microscale mechanical interlocking and a discontinuous nanoscale interfacial Al-Fe-Si intermetallic phase layer. Analysis of scanning electron diffraction data acquired in a tilt series, indicated that the polycrystalline intermetallic phase layer contained the cubic αc phase. The results give insight into the bonding mechanisms of aluminium-steel joints and into the performance of HYB joints, which may be used to better understand and further develop aluminium-steel joining processes.
|
Nov 2020
|
|
I14-Hard X-ray Nanoprobe
|
Thomas M. M.
Heenan
,
Aaron
Wade
,
Chun
Tan
,
Julia E.
Parker
,
Dorota
Matras
,
Andrew S.
Leach
,
James B.
Robinson
,
Alice
Llewellyn
,
Alexander
Dimitrijevic
,
Rhodri
Jervis
,
Paul D.
Quinn
,
Dan J. L.
Brett
,
Paul R.
Shearing
Diamond Proposal Number(s):
[20841, 23858]
Open Access
Abstract: The next generation of automotive lithium‐ion batteries may employ NMC811 materials; however, defective particles are of significant interest due to their links to performance loss. Here, it is demonstrated that even before operation, on average, one‐third of NMC811 particles experience some form of defect, increasing in severity near the separator interface. It is determined that defective particles can be detected and quantified using low resolution imaging, presenting a significant improvement for material statistics. Fluorescence and diffraction data reveal that the variation of Mn content within the NMC particles may correlate to crystallographic disordering, indicating that the mobility and dissolution of Mn may be a key aspect of degradation during initial cycling. This, however, does not appear to correlate with the severity of particle cracking, which when analyzed at high spatial resolutions, reveals cracking structures similar to lower Ni content NMC, suggesting that the disconnection and separation of neighboring primary particles may be due to electrochemical expansion/contraction, exacerbated by other factors such as grain orientation that are inherent in such polycrystalline materials. These findings can guide research directions toward mitigating degradation at each respective length‐scale: electrode sheets, secondary and primary particles, and individual crystals, ultimately leading to improved automotive ranges and lifetimes.
|
Nov 2020
|
|
B18-Core EXAFS
|
Gustav W.
Sievers
,
Anders W.
Jensen
,
Jonathan
Quinson
,
Alessandro
Zana
,
Francesco
Bizzotto
,
Mehtap
Oezaslan
,
Alexandra
Dworzak
,
Jacob J. K.
Kirkensgaard
,
Thomas E. L.
Smitshuysen
,
Shima
Kadkhodazadeh
,
Mikkel
Juelsholt
,
Kirsten M. Ø.
Jensen
,
Kirsten
Anklam
,
Hao
Wan
,
Jan
Schäfer
,
Klára
Čépe
,
María
Escudero-Escribano
,
Jan
Rossmeisl
,
Antje
Quade
,
Volker
Brüser
,
Matthias
Arenz
Diamond Proposal Number(s):
[12746]
Abstract: Several concepts for platinum-based catalysts for the oxygen reduction reaction (ORR) are presented that exceed the US Department of Energy targets for Pt-related ORR mass activity. Most concepts achieve their high ORR activity by increasing the Pt specific activity at the expense of a lower electrochemically active surface area (ECSA). In the potential region controlled by kinetics, such a lower ECSA is counterbalanced by the high specific activity. At higher overpotentials, however, which are often applied in real systems, a low ECSA leads to limitations in the reaction rate not by kinetics, but by mass transport. Here we report on self-supported platinum–cobalt oxide networks that combine a high specific activity with a high ECSA. The high ECSA is achieved by a platinum–cobalt oxide bone nanostructure that exhibits unprecedentedly high mass activity for self-supported ORR catalysts. This concept promises a stable fuel-cell operation at high temperature, high current density and low humidification.
|
Aug 2020
|
|