I04-Macromolecular Crystallography
|
Katrin
Fischer
,
Aleksei
Lulla
,
Tsz Y.
So
,
Pehuén
Pereyra-Gerber
,
Matthew I. J.
Raybould
,
Timo N.
Kohler
,
Juan Carlos
Yam-Puc
,
Tomasz S.
Kaminski
,
Robert
Hughes
,
Gwendolyn L.
Pyeatt
,
Florian
Leiss-Maier
,
Paul
Brear
,
Nicholas J.
Matheson
,
Charlotte M.
Deane
,
Marko
Hyvonen
,
James E. D.
Thaventhiran
,
Florian
Hollfelder
Diamond Proposal Number(s):
[25402]
Open Access
Abstract: Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml−1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
|
Aug 2024
|
|
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Colin W. J.
Lockwood
,
Benjamin W.
Nash
,
Simone E.
Newton-Payne
,
Jessica H.
Van Wonderen
,
Keir P. S.
Whiting
,
Abigail
Connolly
,
Alexander L.
Sutton-Cook
,
Archie
Crook
,
Advait R.
Aithal
,
Marcus J.
Edwards
,
Thomas A.
Clarke
,
Amit
Sachdeva
,
Julea N.
Butt
Diamond Proposal Number(s):
[25108, 32728]
Open Access
Abstract: Genetic code expansion has enabled cellular synthesis of proteins containing unique chemical functional groups to allow the understanding and modulation of biological systems and engineer new biotechnology. Here, we report the development of efficient methods for site-specific incorporation of structurally diverse noncanonical amino acids (ncAAs) into proteins expressed in the electroactive bacterium Shewanella oneidensis MR-1. We demonstrate that the biosynthetic machinery for ncAA incorporation is compatible and orthogonal to the endogenous pathways of S. oneidensis MR-1 for protein synthesis, maturation of c-type cytochromes, and protein secretion. This allowed the efficient synthesis of a c-type cytochrome, MtrC, containing site-specifically incorporated ncAA in S. oneidensis MR-1 cells. We demonstrate that site-specific replacement of surface residues in MtrC with ncAAs does not influence its three-dimensional structure and redox properties. We also demonstrate that site-specifically incorporated bioorthogonal functional groups could be used for efficient site-selective labeling of MtrC with fluorophores. These synthetic biology developments pave the way to expand the chemical repertoire of designer proteins expressed in S. oneidensis MR-1.
|
Aug 2024
|
|
B21-High Throughput SAXS
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[27906, 37100]
Open Access
Abstract: A long-standing challenge is how to formulate proteins and vaccines to retain function during storage and transport and to remove the burdens of cold-chain management. Any solution must be practical to use, with the protein being released or applied using clinically relevant triggers. Advanced biologic therapies are distributed cold, using substantial energy, limiting equitable distribution in low-resource countries and placing responsibility on the user for correct storage and handling. Cold-chain management is the best solution at present for protein transport but requires substantial infrastructure and energy. For example, in research laboratories, a single freezer at −80 °C consumes as much energy per day as a small household1. Of biological (protein or cell) therapies and all vaccines, 75% require cold-chain management; the cost of cold-chain management in clinical trials has increased by about 20% since 2015, reflecting this complexity. Bespoke formulations and excipients are now required, with trehalose2, sucrose or polymers3 widely used, which stabilize proteins by replacing surface water molecules and thereby make denaturation thermodynamically less likely; this has enabled both freeze-dried proteins and frozen proteins. For example, the human papilloma virus vaccine requires aluminium salt adjuvants to function, but these render it unstable against freeze–thaw4, leading to a very complex and expensive supply chain. Other ideas involve ensilication5 and chemical modification of proteins6. In short, protein stabilization is a challenge with no universal solution7,8. Here we designed a stiff hydrogel that stabilizes proteins against thermal denaturation even at 50 °C, and that can, unlike present technologies, deliver pure, excipient-free protein by mechanically releasing it from a syringe. Macromolecules can be loaded at up to 10 wt% without affecting the mechanism of release. This unique stabilization and excipient-free release synergy offers a practical, scalable and versatile solution to enable the low-cost, cold-chain-free and equitable delivery of therapies worldwide.
|
Jul 2024
|
|
I04-Macromolecular Crystallography
|
Rafal
Zdrzalek
,
Yuxuan
Xi
,
Thorsten
Langner
,
Adam R.
Bentham
,
Yohann
Petit-Houdenot
,
Juan Carlos
De La Concepcion
,
Adeline
Harant
,
Motoki
Shimizu
,
Vincent
Were
,
Nicholas J.
Talbot
,
Ryohei
Terauchi
,
Sophien
Kamoun
,
Mark J.
Banfield
Diamond Proposal Number(s):
[25108]
Open Access
Abstract: Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal–associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.
|
Jul 2024
|
|
I24-Microfocus Macromolecular Crystallography
|
Christa
Litschko
,
Valerio
Di Domenico
,
Julia
Schultz
,
Sizhe
Li
,
Olga G.
Ovchinnikova
,
Thijs
Voskuilen
,
Andrea
Bethe
,
Javier O.
Cifuente
,
Alberto
Marina
,
Insa
Budde
,
Tim A.
Mast
,
Małgorzata
Sulewska
,
Monika
Berger
,
Falk F. R.
Buettner
,
Todd L.
Lowary
,
Chris
Whitfield
,
Jeroen D. C.
Codée
,
Mario
Schubert
,
Marcelo E.
Guerin
,
Timm
Fiebig
Diamond Proposal Number(s):
[28360]
Open Access
Abstract: Capsules are long-chain carbohydrate polymers that envelop the surfaces of many bacteria, protecting them from host immune responses. Capsule biosynthesis enzymes are potential drug targets and valuable biotechnological tools for generating vaccine antigens. Despite their importance, it remains unknown how structurally variable capsule polymers of Gram-negative pathogens are linked to the conserved glycolipid anchoring these virulence factors to the bacterial membrane. Using Actinobacillus pleuropneumoniae as an example, we demonstrate that CpsA and CpsC generate a poly(glycerol-3-phosphate) linker to connect the glycolipid with capsules containing poly(galactosylglycerol-phosphate) backbones. We reconstruct the entire capsule biosynthesis pathway in A. pleuropneumoniae serotypes 3 and 7, solve the X-ray crystal structure of the capsule polymerase CpsD, identify its tetratricopeptide repeat domain as essential for elongating poly(glycerol-3-phosphate) and show that CpsA and CpsC stimulate CpsD to produce longer polymers. We identify the CpsA and CpsC product as a wall teichoic acid homolog, demonstrating similarity between the biosynthesis of Gram-positive wall teichoic acid and Gram-negative capsules.
|
Jul 2024
|
|
I03-Macromolecular Crystallography
I04-Macromolecular Crystallography
I24-Microfocus Macromolecular Crystallography
|
Ana
Martínez Gascueña
,
Haiyang
Wu
,
Rui
Wang
,
C. David
Owen
,
Pedro J.
Hernando
,
Serena
Monaco
,
Matthew
Penner
,
Ke
Xing
,
Gwenaelle
Le Gall
,
Richard
Gardner
,
Didier
Ndeh
,
Paulina A.
Urbanowicz
,
Daniel I. R.
Spencer
,
Martin
Walsh
,
Jesus
Angulo
,
Nathalie
Juge
Open Access
Abstract: Microbial α-L-fucosidases catalyse the hydrolysis of terminal α-L-fucosidic linkages and can perform transglycosylation reactions. Based on sequence identity, α-L-fucosidases are classified in glycoside hydrolases (GHs) families of the carbohydrate-active enzyme database. Here we explored the sequence-function space of GH29 fucosidases. Based on sequence similarity network (SSN) analyses, 15 GH29 α-L-fucosidases were selected for functional characterisation. HPAEC-PAD and LC-FD-MS/MS analyses revealed substrate and linkage specificities for α1,2, α1,3, α1,4 and α1,6 linked fucosylated oligosaccharides and glycoconjugates, consistent with their SSN clustering. The structural basis for the substrate specificity of GH29 fucosidase from Bifidobacterium asteroides towards α1,6 linkages and FA2G2 N-glycan was determined by X-ray crystallography and STD NMR. The capacity of GH29 fucosidases to carry out transfucosylation reactions with GlcNAc and 3FN as acceptors was evaluated by TLC combined with ESI–MS and NMR. These experimental data supported the use of SSN to further explore the GH29 sequence-function space through machine-learning models. Our lightweight protein language models could accurately allocate test sequences in their respective SSN clusters and assign 34,258 non-redundant GH29 sequences into SSN clusters. It is expected that the combination of these computational approaches will be used in the future for the identification of novel GHs with desired specificities.
|
Jun 2024
|
|
B21-High Throughput SAXS
|
Abstract: Glycoside hydrolase family 5 (GH5) encompasses enzymes with several different activities, including endo-1,4-β-mannosidases. These enzymes are involved in mannan degradation, and have a number of biotechnological applications, such as mannooligosaccharide prebiotics production, stain removal and dyes decolorization, to name a few. Despite the importance of GH5 enzymes, only a few members of subfamily 7 were structurally characterized. In the present work, biochemical and structural characterization of Bacillus licheniformis GH5 mannanase, BlMan5_7 were performed and the enzyme cleavage pattern was analyzed, showing that BlMan5_7 requires at least 5 occupied subsites to perform efficient hydrolysis. Additionally, crystallographic structure at 1.3 Å resolution was determined and mannoheptaose (M7) was docked into the active site to investigate the interactions between substrate and enzyme through molecular dynamic (MD) simulations, revealing the existence of a − 4 subsite, which might explain the generation of mannotetraose (M4) as an enzyme product. Biotechnological application of the enzyme in stain removal was investigated, demonstrating that BlMan5_7 addition to washing solution greatly improves mannan-based stain elimination.
|
Jun 2024
|
|
B18-Core EXAFS
|
Open Access
Abstract: Background: Biogeochemical processing of metals including the fabrication of novel nanomaterials from metal contaminated waste streams by microbial cells is an area of intense interest in the environmental sciences. Results: Here we focus on the fate of Ce during the microbial reduction of a suite of Ce-bearing ferrihydrites with between 0.2 and 4.2 mol% Ce. Cerium K-edge X-ray absorption near edge structure (XANES) analyses showed that trivalent and tetravalent cerium co-existed, with a higher proportion of tetravalent cerium observed with increasing Ce-bearing of the ferrihydrite. The subsurface metal-reducing bacterium Geobacter sulfurreducens was used to bioreduce Ce-bearing ferrihydrite, and with 0.2 mol% and 0.5 mol% Ce, an Fe(II)-bearing mineral, magnetite (Fe(II)(III)2O4), formed alongside a small amount of goethite (FeOOH). At higher Ce-doping (1.4 mol% and 4.2 mol%) Fe(III) bioreduction was inhibited and goethite dominated the final products. During microbial Fe(III) reduction Ce was not released to solution, suggesting Ce remained associated with the Fe minerals during redox cycling, even at high Ce loadings. In addition, Fe L2,3 X-ray magnetic circular dichroism (XMCD) analyses suggested that Ce partially incorporated into the Fe(III) crystallographic sites in the magnetite. The use of Ce-bearing biomagnetite prepared in this study was tested for hydrogen fuel cell catalyst applications. Platinum/carbon black electrodes were fabricated, containing 10% biomagnetite with 0.2 mol% Ce in the catalyst. The addition of bioreduced Ce-magnetite improved the electrode durability when compared to a normal Pt/CB catalyst. Conclusion: Different concentrations of Ce can inhibit the bioreduction of Fe(III) minerals, resulting in the formation of different bioreduction products. Bioprocessing of Fe-minerals to form Ce-containing magnetite (potentially from waste sources) offers a sustainable route to the production of fuel cell catalysts with improved performance.
|
Apr 2024
|
|
I04-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[19800]
Open Access
Abstract: The CoA ligase from Metallosphaera sedula (MsACL) can be used for the chemoenzymatic synthesis of amides from carboxylic acids. In this CoA-independent conversion, the enzyme catalyzes the adenylation of a carboxylic acid with the help of ATP, followed by the uncatalyzed cleavage of acyl-AMP by a nucleophilic amine to yield an amide. With ω-amino acids as substrates this reaction may result in formation of lactams, but unfortunately the substrate preference of the wild-type enzyme is rather limited. To allow structure-based protein engineering and expand the substrate scope of the enzyme, crystal structures of MsACL were solved in the thioesterification conformational state with AMP, CoA and with the reaction intermediate acetyl-AMP bound in the active site. Using substrate docking and by comparing the crystals structures and sequence of MsACL to those of related CoA ligases, mutations were predicted which increase the affinity in the carboxylic acid binding pocket for ω-amino acids. The resulting mutations transformed a non-active enzyme into an active enzyme for ε-caprolactam synthesis, highlighting the potential of the thermophilic CoA ligase for this synthetic and biotechnologically relevant reaction.
|
Mar 2024
|
|
I03-Macromolecular Crystallography
|
Diamond Proposal Number(s):
[31229]
Abstract: L-Ascorbic acid (AsA, vitamin C) is a pivotal dietary nutrient with multifaceted importance in living organisms. In plants, the Smirnoff-Wheeler (SW) pathway is the primary route for AsA biosynthesis and understanding the mechanistic details behind its component enzymes has implications for plant biology, nutritional science and biotechnology. As part of an initiative to determine the structures of all six core enzymes of the pathway, the present study focusses on three of them from the model system Myrciaria dubia (camu-camu): GDP-D-mannose 3',5'-epimerase (GME), L-galactose dehydrogenase (L-GalDH), and L-galactono-1,4-lactone dehydrogenase (L-GalLDH). We provide insights into substrate and cofactor binding and the conformational changes they induce. The MdGME structure reveals a distorted substrate in the active site, pertinent to the catalytic mechanism. MdL-GalDH shows that the way in which NAD+ association affects loop structure over the active site is not conserved when compared with its homologue from spinach. Finally, the structure of MdL-GalLDH is described for the first time. This allows for the rationalization of previously identified residues which play important roles in the active site or in the formation of the covalent bond with the FAD. In conclusion, this study enhances our understanding of AsA biosynthesis in plants and the information provided should prove useful for biotechnological applications.
|
Jan 2024
|
|