I10-Beamline for Advanced Dichroism
|
Open Access
Abstract: Element-specific spectroscopies using synchrotron-radiation can provide unique insights into materials properties. The recently developed technique of X-ray detected ferromagnetic resonance (XFMR) allows studying the magnetization dynamics of magnetic spin structures. Magnetic sensitivity in XFMR is obtained from the X-ray magnetic circular dichroism (XMCD) effect, where the phase of the magnetization precession of each magnetic layer with respect to the exciting radio frequency is obtained using stroboscopic probing of the spin precession. Measurement of both amplitude and phase response in the magnetic layers as a function of bias field can give a clear signature of spin-transfer torque (STT) coupling between ferromagnetic layers due to spin pumping. In the last few years, there have been new developments utilizing X-ray scattering techniques to reveal the precessional magnetization dynamics of ordered spin structures in the GHz frequency range. The techniques of diffraction and reflectometry ferromagnetic resonance (DFMR and RFMR) provide novel ways for the probing of the dynamics of chiral and multilayered magnetic materials, thereby accessing key information relevant to the engineering and development of high-density and low-energy consumption data processing solutions.
|
Jul 2023
|
|
I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[24845]
Open Access
Abstract: W-type hexaferrites with varied Co/Zn ratios were synthesized and the magnetic order was investigated using neutron powder diffraction. In SrCo2Fe16O27 and SrCoZnFe16O27 a planar (Cm′cm′) magnetic ordering was found, rather than the uniaxial ordering (P63/mm′c′) found in SrZn2Fe16O27 which is common in most W-type hexaferrites. In all three studied samples, non-collinear terms were present in the magnetic ordering. One of the non-collinear terms is common to the planar ordering in SrCoZnFe16O27 and uniaxial ordering in SrZn2Fe16O27, which could be a sign of an imminent transition in the magnetic structure. The thermomagnetic measurements revealed magnetic transitions at 520 and 360 K for SrCo2Fe16O27 and SrCoZnFe16O27, and Curie temperatures of 780 and 680 K, respectively, while SrZn2Fe16O27 showed no transition but a Curie temperature at 590 K. This leads to the conclusion that the magnetic transition can be adjusted by fine-tuning the Co/Zn stoichiometry in the sample.
|
Jun 2023
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[25739, 28742]
Abstract: The ability to control the structural properties of molecular layers is a key for the design and preparation of organic electronic devices. While microscopic growth studies of planar, rigid and symmetric π-conjugated molecules have been performed to a larger extent, this is less the case for elongated donor-acceptor molecules with flexible functional groups, which are particularly interesting due to their high dipole moments. Prototypical molecules of this type are merocyanines (MCs), which have been widely studied for the use as efficient absorbers in organic photodetectors. For maximized light absorption and optimized electronic properties the molecular arrangement which is affected by the initial assembly of the films at the supporting substrate interface is decisive. The situation deserves special attention, when the surface nucleation leads to so far not known and bulk-unlike aggregates. Here, we report on the growth of a typical MC (HB238) on the Ag(100) surface, serving as the substrate. In the energetically preferred phase, the molecules adsorb in a face-on geometry and organize in tetramers with a circular dipole arrangement. The tetramers further self-order in large, enantiopure domains with a periodicity that is commensurate to the Ag(100) surface, likely due to a specific bonding of the thiophene and thiazol rings to the Ag surface. Using scanning tunneling microscopy (STM) in combination with low energy electron diffraction we derive the detailed structure of the tetramers. The center of the tetramer, which is most prominent in STM images, consists of four upward pointing tert-butyl groups from four molecules. It is encircled by a ring of four hydrogen bonds between terminal CN-groups and thiophene rings on neighboring molecules. In parallel, the surface interaction modifies the intramolecular dipole, which is revealed from photoemission spectroscopy. Hence, this example shows how the surface template effect leads to an unforeseen molecular organization which is considerably more complex to that in the bulk phases of HB238, which feature paired dipoles.
|
May 2023
|
|
I09-Surface and Interface Structural Analysis
|
Diamond Proposal Number(s):
[29451]
Open Access
Abstract: Interdiffusion phenomena between adjacent materials are highly prevalent in semiconductor device architectures and can present a major reliability challenge for the industry. To fully capture these phenomena, experimental approaches must go beyond static and post-mortem studies to include in situ and in-operando setups. Here, soft and hard X-ray photoelectron spectroscopy (SXPS and HAXPES) is used to monitor diffusion in real-time across a proxy device. The device consists of a Si/SiO2/TixW1−x(300 nm)/Cu(25 nm) thin film material stack, with the TixW1−x film (x = 0.054, 0.115, 0.148) acting as a diffusion barrier between Si and Cu. The interdiffusion is monitored through the continuous collection of spectra whilst in situ annealing to 673 K. Ti within the TiW is found to be highly mobile during annealing, diffusing out of the barrier and accumulating at the Cu surface. Increasing the Ti concentration within the TixW1−x film increases the quantity of accumulated Ti, and Ti is first detected at the Cu surface at temperatures as low as 550 K. Surprisingly, at low Ti concentrations (x = 0.054), W is also mobile and diffuses alongside Ti. By monitoring the Ti 1s core level with HAXPES, the surface-accumulated Ti was observed to undergo oxidation even under ultra-high vacuum conditions, highlighting the reactivity of Ti in this system. These results provide crucial evidence for the importance of diffusion barrier composition on their efficacy during device application, delivering insights into the mechanisms underlying their effectiveness and limitations.
|
May 2023
|
|
I09-Surface and Interface Structural Analysis
|
Maria
Basso
,
Elena
Colusso
,
Chiara
Carraro
,
Curran
Kalha
,
Aysha A.
Riaz
,
Giada
Bombardelli
,
Enrico
Napolitani
,
Yu
Chen
,
Jacek
Jasieniak
,
Laura E.
Ratcliff
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Anna
Regoutz
,
Alessandro
Martucci
Diamond Proposal Number(s):
[29451]
Abstract: The thermochromic properties of vanadium dioxide (VO2) offer great advantages for energy-saving smart windows, memory devices, and transistors. However, the crystallization of solution-based thin films at temperatures lower than 400°C remains a challenge. Photonic annealing has recently been exploited to crystallize metal oxides, with minimal thermal damage to the substrate and reduced manufacturing time. Here, VO2 thin films, obtained via a green sol-gel process, were crystallized by pulsed excimer laser annealing. The influence of increasing laser fluence and pulse number on the film properties was systematically studied through optical, structural, morphological, and chemical characterizations. From temperature profile simulations, the temperature rise was confirmed to be confined within the film during the laser pulses, with negligible substrate heating. Threshold laser parameters to induce VO2 crystallization without surface melting were found. With respect to furnace annealing, both the crystallization temperature and the annealing time were substantially reduced, with VO2 crystallization being achieved within only 60 s of laser exposure. The laser processing was performed at room temperature in air, without the need of a controlled atmosphere. The thermochromic properties of the lasered thin films were comparable with the reference furnace-treated samples.
|
May 2023
|
|
I06-Nanoscience
|
C.
Schmitt
,
L.
Sanchez-Tejerina
,
M.
Filianina
,
F.
Fuhrmann
,
H.
Meer
,
R.
Ramos
,
F.
Maccherozzi
,
D.
Backes
,
E.
Saitoh
,
G.
Finocchio
,
L.
Baldrati
,
M.
Klaui
Diamond Proposal Number(s):
[22448]
Abstract: The understanding of antiferromagnetic domain walls, which are the interface between domains with different Néel order orientations, is a crucial aspect to enable the use of antiferromagnetic materials as active elements in future spintronic devices. In this work, we demonstrate that in antiferromagnetic NiO/Pt bilayers arbitrary-shaped structures can be generated by switching driven by electrical current pulses. The generated domains are T domains, separated from each other by a domain wall whose spins are pointing toward the average direction of the two T domains rather than the common axis of the two planes. Interestingly, this direction is the same for the whole domain wall indicating the absence of strong Lifshitz invariants. The domain wall can be micromagnetically modeled by strain distributions in the NiO thin film induced by the MgO substrate, deviating from the bulk anisotropy. From our measurements we determine the domain-wall width to have a full width at half maximum of
Δ
=
98
±
10
nm, demonstrating strong confinement.
|
May 2023
|
|
|
Open Access
Abstract: All-optical control of terahertz pulses is essential for the development of optoelectronic devices for next-generation quantum technologies. Despite substantial research in THz generation methods, polarization control remains difficult. Here, we demonstrate that by exploiting band structure topology, both helicity-dependent and helicity-independent THz emission can be generated from nanowires of the topological Dirac semimetal Cd3As2. We show that narrowband THz pulses can be generated at oblique incidence by driving the system with optical (1.55 eV) pulses with circular polarization. Varying the incident angle also provides control of the peak emission frequency, with peak frequencies spanning 0.21–1.40 THz as the angle is tuned from 15 to 45°. We therefore present Cd3As2 nanowires as a promising novel material platform for controllable terahertz emission.
|
Apr 2023
|
|
I06-Nanoscience
|
S.
Reimers
,
Y.
Lytvynenko
,
Y. R.
Niu
,
E.
Golias
,
B.
Sarpi
,
L. S. I.
Veiga
,
T.
Denneulin
,
A.
Kovács
,
R. E.
Dunin-Borkowski
,
J.
Bläßer
,
M.
Klaui
,
M.
Jourdan
Diamond Proposal Number(s):
[30141]
Open Access
Abstract: Current pulse driven Néel vector rotation in metallic antiferromagnets is one of the most promising concepts in antiferromagnetic spintronics. We show microscopically that the Néel vector of epitaxial thin films of the prototypical compound Mn2Au can be reoriented reversibly in the complete area of cross shaped device structures using single current pulses. The resulting domain pattern with aligned staggered magnetization is long term stable enabling memory applications. We achieve this switching with low heating of ≈20 K, which is promising regarding fast and efficient devices without the need for thermal activation. Current polarity dependent reversible domain wall motion demonstrates a Néel spin-orbit torque acting on the domain walls.
|
Apr 2023
|
|
I05-ARPES
|
Seyeong
Cha
,
Giyeok
Lee
,
Sol
Lee
,
Sae Hee
Ryu
,
Yeongsup
Sohn
,
Gijeong
An
,
Changmo
Kang
,
Minsu
Kim
,
Kwanpyo
Kim
,
Aloysius
Soon
,
Keun Su
Kim
Diamond Proposal Number(s):
[19304, 24691]
Open Access
Abstract: A variety of phase transitions have been found in two-dimensional layered materials, but some of their atomic-scale mechanisms are hard to clearly understand. Here, we report the discovery of a phase transition whose mechanism is identified as interlayer sliding in lead iodides, a layered material widely used to synthesize lead halide perovskites. The low-temperature crystal structure of lead iodides is found not 2H polytype as known before, but non-centrosymmetric 4H polytype. This undergoes the order-disorder phase transition characterized by the abrupt spectral broadening of valence bands, taken by angle-resolved photoemission, at the critical temperature of 120 K. It is accompanied by drastic changes in simultaneously taken photocurrent and photoluminescence. The transmission electron microscopy is used to reveal that lead iodide layers stacked in the form of 4H polytype at low temperatures irregularly slide over each other above 120 K, which can be explained by the low energy barrier of only 10.6 meV/atom estimated by first principles calculations. Our findings suggest that interlayer sliding is a key mechanism of the phase transitions in layered materials, which can significantly affect optoelectronic and optical characteristics.
|
Apr 2023
|
|
I09-Surface and Interface Structural Analysis
|
Abstract: The discovery of ferroelectricity in CMOS-compatible oxides, such as doped hafnium oxide, has opened new possibilities for electronics by reviving the use of ferroelectric implementations on modern technology platforms. This thesis presents the ground-up integration of ferroelectric HfO2 on a thermally sensitive III-V nanowire platform leading to the successful implementation of ferroelectric transistors (FeFETs), tunnel junctions (FTJs), and varactors for mm-wave applications. As ferroelectric HfO2 on III-V semiconductors is a nascent technology, a special emphasis is put on the fundamental integration issues and the various engineering challenges facing the technology.
The fabrication of metal-oxide-semiconductor (MOS) capacitors is treated as well as the measurement methods developed to investigate the interfacial quality to the narrow bandgap III-V materials using both electrical and operando synchrotron light source techniques. After optimizing both the films and the top electrode, the gate stack is integrated onto vertical InAs nanowires on Si in order to successfully implement FeFETs. Their performance and reliability can be explained from the deeper physical understanding obtained from the capacitor structures.
By introducing an InAs/(In)GaAsSb/GaSb heterostructure in the nanowire, a ferroelectric tunnel field effect transistor (ferro-TFET) is fabricated. Based on the ultra-short effective channel created by the band-to-band tunneling process, the localized potential variations induced by single ultra-scaled ferroelectric domains and individual defects are sensed and investigated. By intentionally introducing a gate-source overlap in the ferro-TFET, a non-volatile reconfigurable single-transistor solution for modulating an input signal with diverse modes including signal transmission, phase shift, frequency doubling, and mixing is implemented.
Finally, by fabricating scaled ferroelectric MOS capacitors in the front-end with a dedicated and adopted RF and mm-wave backend-of-line (BEOL) implementation, the ferroelectric behavior is captured at RF and mm-wave frequencies.
|
Apr 2023
|
|