|
Ralf F.
Ziesche
,
Thomas M. M.
Heenan
,
Pooja
Kumari
,
Jarrod
Williams
,
Weiqun
Li
,
Matthew E.
Curd
,
Timothy L.
Burnett
,
Ian
Robinson
,
Dan J. L.
Brett
,
Matthias J.
Ehrhardt
,
Paul D.
Quinn
,
Layla B.
Mehdi
,
Philip J.
Withers
,
Melanie
Britton
,
Nigel D.
Browning
,
Paul R.
Shearing
Open Access
Abstract: Demand for low carbon energy storage has highlighted the importance of imaging techniques for the characterization of electrode microstructures to determine key parameters associated with battery manufacture, operation, degradation, and failure both for next generation lithium and other novel battery systems. Here, recent progress and literature highlights from magnetic resonance, neutron, X-ray, focused ion beam, scanning and transmission electron microscopy are summarized. Two major trends are identified: First, the use of multi-modal microscopy in a correlative fashion, providing contrast modes spanning length- and time-scales, and second, the application of machine learning to guide data collection and analysis, recognizing the role of these tools in evaluating large data streams from increasingly sophisticated imaging experiments.
|
May 2023
|
|
I14-Hard X-ray Nanoprobe
|
Diamond Proposal Number(s):
[20420, 28521]
Open Access
Abstract: All-perovskite tandem solar cells beckon as lower cost alternatives to conventional single-junction cells. Solution processing has enabled rapid optimization of perovskite solar technologies, but new deposition routes will enable modularity and scalability, facilitating technology adoption. Here, we utilize 4-source vacuum deposition to deposit FA0.7Cs0.3Pb(IxBr1–x)3 perovskite, where the bandgap is changed through fine control over the halide content. We show how using MeO-2PACz as a hole-transporting material and passivating the perovskite with ethylenediammonium diiodide reduces nonradiative losses, resulting in efficiencies of 17.8% in solar cells based on vacuum-deposited perovskites with a bandgap of 1.76 eV. By similarly passivating a narrow-bandgap FA0.75Cs0.25Pb0.5Sn0.5I3 perovskite and combining it with a subcell of evaporated FA0.7Cs0.3Pb(I0.64Br0.36)3, we report a 2-terminal all-perovskite tandem solar cell with champion open circuit voltage and efficiency of 2.06 V and 24.1%, respectively. This dry deposition method enables high reproducibility, opening avenues for modular, scalable multijunction devices even in complex architectures.
|
May 2023
|
|
I07-Surface & interface diffraction
|
Daniel T. W.
Toolan
,
Michael P.
Weir
,
Shuangqing
Wang
,
Simon A.
Dowland
,
Zhilong
Zhang
,
James
Xiao
,
Jonathan
Rawle
,
Neil
Greenham
,
Richard
Friend
,
Akshay
Rao
,
Richard A. L.
Jones
,
Anthony J.
Ryan
Diamond Proposal Number(s):
[23587]
Open Access
Abstract: Hybrid small-molecule organic semiconductor / quantum dot blend films are attractive for high efficiency low-cost solar energy harvesting devices. Understanding and controlling the self-assembly of the organic semiconductor and quantum dots is crucial in optimising device performance, not only at a lab-scale but for large-scale high-throughput printing and coating methods. Here, in situ grazing incidence X-ray scattering (GIXS) is employed in order to gain direct insights into how small-molecule organic semiconductor / quantum dot blends self-assemble during blade coating. Results show that for two different archetypal organic small molecule:quantum dot blends, small-molecule crystallisation may either occur spontaneously or be mediated by the formation of quantum dot aggregates. Irrespective of the initial crystallisation route, the small-molecule crystallisation acts to exclude the quantum dot impurities from the growing crystalline matrix phase. These results provide important fundamental understanding of structure formation of small organic molecule:quantum dot films prepared via solution processing routes, compatible with large scale deposition manufacturing.
|
May 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Open Access
Abstract: Optimisation of electrodeposition routes of birnessite manganese dioxide (MnO2) coatings onto 3D graphene foam substrates enabled greater attainable capacitances. Current pulse deposition method resulted in highest achievable areal capacitance of 530 mF/cm2 under a 10 mA/cm2 current rate, cycling performance with 91% retention after 9000 cycles, as well as improved rate capability when compared to the cyclic voltammetry or galvanostatic deposition. Introduction of oxygen functional groups to the graphene foam added initial pseudocapacitance and accelerated the rate for nucleation and growth of the MnO2 crystal grains, resulting in an areal capacitance of 410 mF/cm2 under a 10 mA/cm2 current rate. However, in this case the increase in specific capacitance was accompanied by sluggish kinetic for charge storage seen via impedance spectroscopy. The charge storage mechanism of the deposited MnO2 films was investigated using in situ Raman microscopy and analysis of peak shifts revealed expansion and contraction of birnessite MnO2, relating to exchange of Na+ and H2O at the MnO2 interface.
|
Apr 2023
|
|
B18-Core EXAFS
|
Open Access
Abstract: Lithium vanadyl phosphate (LiVOPO4) is a next-generation multielectron battery cathode that can intercalate up to two Li-ions per V-ion through the redox couples of V4+/V3+ and V5+/V4+. However, its rate capacity is undermined by the sluggish Li-ion diffusion in the high-voltage region (4 V for V5+/V4+ redox). Nb substitution was used to expand the crystal lattice to facilitate Li-ion diffusion. In this work, Nb substitution was achieved via hydrothermal synthesis, which resulted in a new, lower symmetry β′-LiVOPO4 phase with preferential Nb occupation of one of the two V sites. This phase presents complex defect chemistries, including cation vacancies and hydrogen interstitials, characterized by a combination of X-ray and neutron diffraction, elemental and thermogravimetric analyses, X-ray absorption spectroscopy, and magnetic susceptibility measurements. The Nb-substituted samples demonstrated improved capacity retention and rate capabilities in the high-voltage region, albeit an enlarged voltage hysteresis related to a partial V4+/V3+ redox reaction, as evidenced by ex-situ X-ray absorption spectroscopy and pair distribution function analysis. This work highlights the importance of understanding the complex defect chemistry and its consequence on electrochemistry in polyanionic intercalation compounds.
|
Apr 2023
|
|
B18-Core EXAFS
|
Abstract: The formation of hybrid plasmonic nanocatalysts made of Au nanoparticles (NPs) combined with catalytically active NPs has gained great attention owing to their interesting properties and efficient catalysis under visible light irradiation. However, the research on the combination of plasmonic metal NPs with unique support frameworks is still limited. In this report, the varying ratio of AuxPdy prepared by the extrusion method on the CuClP framework has been correlated to its optimized catalysis in the Suzuki-Miyaura coupling reaction in dark and under visible light irradiation. The prepared catalysts AuxPdy/CuClP were characterized by spectroscopic techniques to understand the structural and electronic modification with different metal ratios. The presence of bimetallic NPs on the surface was confirmed by HR-TEM measurements and [MCl4]n− species in the framework were validated by XPS, FT-EXAFS, DR UV-Vis-NIR, and Raman analysis. The obtained results display the superior catalytic performance and highest plasmonic enhancement factor over Au1Pd1/CuClP under visible light irradiation, which was facilely recycled and reused for several cycles. The hot-electron transfer mechanism has been discussed for enhanced catalysis in the plasmon-driven Suzuki−Miyaura coupling reaction. These results are highly significant in the rational design of new plasmonic photocatalysts combined with unique support materials.
|
Apr 2023
|
|
I15-1-X-ray Pair Distribution Function (XPDF)
|
Samuel W.
Coles
,
Viktoria
Falkowski
,
Harry S.
Geddes
,
Gabriel E.
Pérez
,
Samuel G.
Booth
,
Alexander G.
Squires
,
Conn
O'Rourke
,
Kit
Mccoll
,
Andrew L.
Goodwin
,
Serena A.
Cussen
,
Simon J.
Clarke
,
Saiful
Islam
,
Benjamin J.
Morgan
Diamond Proposal Number(s):
[27702]
Open Access
Abstract: Short-range ordering in cation-disordered cathodes can have a significant effect on their electrochemical properties. Here, we characterise the cation short-range order in the antiperovskite cathode material Li2FeSO, using density functional theory, Monte Carlo simulations, and synchrotron X-ray pair-distribution-function data. We predict partial short-range cation-ordering, characterised by favourable OLi4Fe2 oxygen coordination with a preference for polar cis-OLi4Fe2 over non-polar trans-OLi4Fe2 configurations. This preference for polar cation configurations produces long-range disorder, in agreement with experimental data. The predicted short-range-order preference contrasts with that for a simple point-charge model, which instead predicts preferential trans-OLi4Fe2 oxygen coordination and corresponding long-range crystallographic order. The absence of long-range order in Li2FeSO can therefore be attributed to the relative stability of cis-OLi4Fe2 and other non-OLi4Fe2 oxygen-coordination motifs. We show that this effect is associated with the polarisation of oxide and sulfide anions in polar coordination environments, which stabilises these polar short-range cation orderings. We propose similar anion-polarisation–directed short-range-ordering may be present in other heterocationic materials that contain cations with different formal charges. Our analysis also illustrates the limitations of using simple point-charge models to predict the structure of cation-disordered materials, where other factors, such as anion polarisation, may play a critical role in directing both short- and long-range structural correlations.
|
Apr 2023
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[25120]
Open Access
Abstract: The development of multielectron redox-active cathode materials is a top priority for achieving high energy density with long cycle life in the next-generation secondary battery applications. Triggering anion redox activity is regarded as a promising strategy to enhance the energy density of polyanionic cathodes for Li/Na-ion batteries. Herein, K2Fe(C2O4)2 is shown to be a promising new cathode material that combines metal redox activity with oxalate anion (C2O42–) redox. This compound reveals specific discharge capacities of 116 and 60 mAh g–1 for sodium-ion batterie (NIB) and lithium-ion batterie (LIB) cathode applications, respectively, at a rate of 10 mA g–1, with excellent cycling stability. The experimental results are complemented by density functional theory (DFT) calculations of the average atomic charges.
|
Mar 2023
|
|
B18-Core EXAFS
|
Panpan
Zhang
,
Mingchao
Wang
,
Yannan
Liu
,
Yubin
Fu
,
Mingming
Gao
,
Gang
Wang
,
Faxing
Wang
,
Zhiyong
Wang
,
Guangbo
Chen
,
Sheng
Yang
,
Youwen
Liu
,
Renhao
Dong
,
Minghao
Yu
,
Xing
Lu
,
Xinliang
Feng
Abstract: Although two-dimensional conjugated metal–organic frameworks (2D c-MOFs) provide an ideal platform for precise tailoring of capacitive electrode materials, high-capacitance 2D c-MOFs for non-aqueous supercapacitors remain to be further explored. Herein, we report a novel phthalocyanine-based nickel-bis(dithiolene) (NiS4)-linked 2D c-MOF (denoted as Ni2[CuPcS8]) with outstanding pseudocapacitive properties in 1 M TEABF4/acetonitrile. Each NiS4 linkage is disclosed to reversibly accommodate two electrons, conferring the Ni2[CuPcS8] electrode a two-step Faradic reaction with a record-high specific capacitance among the reported 2D c-MOFs in non-aqueous electrolytes (312 F g–1) and remarkable cycling stability (93.5% after 10,000 cycles). Multiple analyses unveil that the unique electron-storage capability of Ni2[CuPcS8] originates from its localized lowest unoccupied molecular orbital (LUMO) over the nickel-bis(dithiolene) linkage, which allows the efficient delocalization of the injected electrons throughout the conjugated linkage units without inducing apparent bonding stress. The Ni2[CuPcS8] anode is used to demonstrate an asymmetric supercapacitor device that delivers a high operating voltage of 2.3 V, a maximum energy density of 57.4 Wh kg–1, and ultralong stability over 5000 cycles.
|
Mar 2023
|
|
I09-Surface and Interface Structural Analysis
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
A. S.
Menon
,
B. J.
Johnston
,
S. G.
Booth
,
L.
Zhang
,
K.
Kress
,
B. E.
Murdock
,
G.
Paez Fajardo
,
N. N.
Anthonisamy
,
N.
Tapia-Ruiz
,
S.
Agrestini
,
M.
Garcia-Fernandez
,
K.
Zhou
,
P. K.
Thakur
,
T. L.
Lee
,
A. J.
Nedoma
,
S. A.
Cussen
,
L. F. J.
Piper
Diamond Proposal Number(s):
[29104, 29113]
Open Access
Abstract: The desire to increase the energy density of stoichiometric layered
Li
TM
O
2
(TM = 3d transition metal) cathode materials has promoted investigation into their properties at high states of charge. Although there is increasing evidence for pronounced oxygen participation in the charge compensation mechanism, questions remain whether this is true
O
-redox, as observed in
Li
-excess cathodes. Through a high-resolution
O
K-edge resonant inelastic x-ray spectroscopy (RIXS) study of the
Mn
-free
Ni
-rich layered oxide
Li
Ni
0.98
W
0.02
O
2
, we demonstrate that the same oxidized oxygen environment exists in both
Li
-excess and non-
Li
-excess systems. The observation of identical RIXS loss features in both classes of compounds is remarkable given the differences in their crystallographic structure and delithiation pathways. This lack of a specific structural motif reveals the importance of electron correlation in the charge compensation mechanism for these systems and indicates how a better description of charge compensation in layered oxides is required to understand anionic redox for energy storage.
|
Mar 2023
|
|