I11-High Resolution Powder Diffraction
|
Diamond Proposal Number(s):
[23975]
Abstract: The strength and fracture toughness of Additively Manufactured (AM) components are significantly influenced by the concentration and size of oxides and precipitate inclusions within the build powders. These features are highly sensitive to powder production parameters, as well as the number of times a powder has been reused. In this study synchrotron X-ray powder diffraction was performed in an inert atmosphere at room temperature and during in-situ heating, providing crucial insights into growth rates and distribution of oxides and precipitates as a function of temperature. From the high angular resolution data collected, the structural refinement showed that plasma wire arc atomisation shows lower residual strain than gas atomised powder samples at room temperature after atomisation likely due to lower temperatures achieved during the production process. Additionally, the results from the diffraction patterns collected during in-situ heating provide key insights to the four metal powders considered in this study, Ti-6Al-4 V, Ni718, AlSi10Mg, and Scalmalloy. This paper also highlights the potential that using synchrotron X-ray diffraction to study AM parts and constituent AM powder has to gain crucial insight into material properties and the build reliability of end use production quality parts from AM.
|
Jun 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[28804]
Open Access
Abstract: Melt flow is critical to build quality during additive manufacturing (AM). When an external magnetic field is applied, it causes forces that alter the flow through the thermoelectric magnetohydrodynamic (TEMHD) effect, potentially altering the final microstructure. However, the extent of TEMHD forces and their underlying mechanisms, remain unclear. We trace the flow of tungsten particles using in situ high-speed synchrotron X-ray radiography and ex situ tomography to reveal the structure of TEMHD-induced flow during directed energy deposition AM (DED-AM). When no magnetic field is imposed, Marangoni convection dominates the flow, leading to a relatively even particle distribution. With a magnetic field parallel to the scan direction, TEMHD flow is induced, circulating in the cross-sectional plane, causing particle segregation to the bottom and side of the pool. Further, a downward magnetic field causes horizontal circulation, segregating particles to the other side. Our results demonstrate that TEMHD can disrupt melt pool flow during DED-AM.
|
Jun 2023
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
A.
Koko
,
S.
Singh
,
S.
Barhli
,
T.
Connolley
,
N. T.
Vo
,
T.
Wigger
,
D.
Liu
,
Y.
Fu
,
J.
Réthoré
,
J.
Lechambre
,
J.-Y.
Buffiere
,
T. J.
Marrow
Diamond Proposal Number(s):
[12585]
Open Access
Abstract: The propagation rate of a fatigue crack in a nodular cast iron, loaded in cyclic tension, has been studied in situ by X-ray computed tomography and digital volume correlation. The semi-elliptical crack initiated from an asymmetric corner notch and evolved to a semi-circular shape, initially with a higher growth rate towards one edge of the notch before the propagation rate along the crack front became essentially independent of po-sition. The phase congruency of the displacement field was used to measure the crack shape. The three-dimensional stress intensity factors were calculated via a linear elastic finite element model that used the displacement fields around the crack front as the boundary conditions. Closure of the crack tip region was observed. The cyclic change in the local mode I opening of the crack tip determined the local fatigue crack propaga-tion rate along the crack front.
|
May 2023
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[21484]
Open Access
Abstract: Using operando X-ray absorption spectroscopy in a continuous-flow microfluidic cell, we have investigated the nucleation of platinum nanoparticles from aqueous hexachloroplatinate solution in the presence of the reducing agent ethylene glycol. By adjusting flow rates in the microfluidic channel, we resolved the temporal evolution of the reaction system in the first few seconds, generating the time profiles for speciation, ligand exchange, and reduction of Pt. Detailed analysis of the X-ray absorption near-edge structure and extended X-ray absorption fine structure spectra with multivariate data analysis shows that at least two reaction intermediates are involved in the transformation of the precursor H2PtCl6 to metallic platinum nanoparticles, including the formation of clusters with Pt–Pt bonding before complete reduction to Pt nanoparticles.
|
May 2023
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[21795, 15151]
Open Access
Abstract: Catalytic allylic alcohol oxidation to aldehydes is an industrial process that necessitates chemoselectivity. Surface PdO (on Pd) enables this transformation but does not represent optimal metal utilisation. Here we report a facile synthesis route to produce isolated surface PdO catalytic sites on an earth-abundant metal (NiO) for cinnamyl alcohol oxidation.
|
May 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Mei-Yan
Gao
,
Andrey A.
Bezrukov
,
Bai-Qiao
Song
,
Meng
He
,
Sousa Javan
Nikkhah
,
Shi-Qiang
Wang
,
Naveen
Kumar
,
Shaza
Darwish
,
Debobroto
Sensharma
,
Chenghua
Deng
,
Jiangnan
Li
,
Lunjie
Liu
,
Rajamani
Krishna
,
Matthias
Vandichel
,
Sihai
Yang
,
Michael J.
Zaworotko
Open Access
Abstract: Ultramicroporous materials can be highly effective at trace gas separations when they offer a high density of selective binding sites. Herein, we report that sql-NbOFFIVE-bpe-Cu, a new variant of a previously reported ultramicroporous square lattice, sql, topology material, sql-SIFSIX-bpe-Zn, can exist in two polymorphs. These polymorphs, sql-NbOFFIVE-bpe-Cu-AA (AA) and sql-NbOFFIVE-bpe-Cu-AB (AB), exhibit AAAA and ABAB packing of the sql layers, respectively. Whereas NbOFFIVE-bpe-Cu-AA (AA) is isostructural with sql-SIFSIX-bpe-Zn, each exhibiting intrinsic 1D channels, sql-NbOFFIVE-bpe-Cu-AB (AB) has two types of channels, the intrinsic channels and extrinsic channels between the sql networks. Gas and temperature induced transformations of the two polymorphs of sql-NbOFFIVE-bpe-Cu were investigated by pure gas sorption, single-crystal X-ray diffraction (SCXRD), variable temperature powder X-ray diffraction (VT-PXRD), and synchrotron PXRD. We observed that the extrinsic pore structure of AB resulted in properties with potential for selective C3H4/C3H6 separation. Subsequent dynamic gas breakthrough measurements revealed exceptional experimental C3H4/C3H6 selectivity (270) and a new benchmark for productivity (118 mmol g–1) of polymer grade C3H6 (purity >99.99%) from a 1:99 C3H4/C3H6 mixture. Structural analysis, gas sorption studies, and gas adsorption kinetics enabled us to determine that a binding “sweet spot” for C3H4 in the extrinsic pores is behind the benchmark separation performance. Density-functional theory (DFT) calculations and Canonical Monte Carlo (CMC) simulations provided further insight into the binding sites of C3H4 and C3H6 molecules within these two hybrid ultramicroporous materials, HUMs. These results highlight, to our knowledge for the first time, how pore engineering through the study of packing polymorphism in layered materials can dramatically change the separation performance of a physisorbent.
|
May 2023
|
|
I19-Small Molecule Single Crystal Diffraction
|
Diamond Proposal Number(s):
[20876]
Open Access
Abstract: Cyclic porphyrin oligomers have been studied as models for photosynthetic light-harvesting antenna complexes and as potential receptors for supramolecular chemistry. Here, we report the synthesis of unprecedented β,β-directly linked cyclic zinc porphyrin oligomers, the trimer (CP3) and tetramer (CP4), by Yamamoto coupling of a 2,3-dibromoporphyrin precursor. Their three-dimensional structures were confirmed by nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry, and single-crystal X-ray diffraction analyses. The minimum-energy geometries of CP3 and CP4 have propeller and saddle shapes, respectively, as calculated using density functional theory. Their different geometries result in distinct photophysical and electrochemical properties. The smaller dihedral angles between the porphyrin units in CP3, compared with CP4, result in stronger π-conjugation, splitting the ultraviolet–vis absorption bands and shifting them to longer wavelengths. Analysis of the crystallographic bond lengths indicates that the central benzene ring of the CP3 is partially aromatic [harmonic oscillator model of aromaticity (HOMA) 0.52], whereas the central cyclooctatetraene ring of the CP4 is non-aromatic (HOMA –0.02). The saddle-shaped structure of CP4 makes it a ditopic receptor for fullerenes, with affinity constants of (1.1 ± 0.4) × 105 M–1 for C70 and (2.2 ± 0.1) × 104 M–1 for C60, respectively, in toluene solution at 298 K. The formation of a 1:2 complex with C60 is confirmed by NMR titration and single-crystal X-ray diffraction.
|
May 2023
|
|
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[30553]
Open Access
Abstract: BiFeO3-BaTiO3 (BF-BT) ceramics are important multiferroic materials, which are attracting significant attention for potential applications in high temperature lead-free piezoelectric transducers. In the present study, the effects of Sr2+ as an acceptor dopant for Bi3+, in the range from 0 to 1.0 at%, on the structure and ferroelectric/piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 ceramics were evaluated. The use of a post-sintering Ar annealing process was found to be an effective approach to reduce electrical conductivity induced by the presence of electron holes associated with reoxidation during cooling. A low Sr dopant concentration (0.3 at %) yielded enhanced ferroelectric (Pmax ~ 0.37 C m-2, Pr ~ 0.30 C m-2) and piezoelectric (d33 ~ 178 pC N-1, kp ~ 0.27) properties, whereas higher levels led to chemically heterogeneous core-shell structures and secondary phases with an associated decline in performance. The electric field-induced strain of the Sr-doped BF-BT ceramics was investigated using a combination of digital image correlation macroscopic strain measurements and in-situ synchrotron X-ray diffraction. Quantification of the intrinsic (lattice strain) and extrinsic (domain switching) contributions to the electric field induced strain indicated that the intrinsic contribution dominated during the poling process.
|
May 2023
|
|
I13-1-Coherence
|
Valerio
Bellucci
,
Marie-Christine
Zdora
,
Ladislav
Mikes
,
Šarlota
Birnšteinová
,
Peter
Oberta
,
Marco
Romagnoni
,
Andrea
Mazzolari
,
Pablo
Villanueva-Perez
,
Rajmund
Mokso
,
Christian
David
,
Mikako
Makita
,
Silvia
Cipiccia
,
Jozef
Ulicny
,
Alke
Meents
,
Adrian P.
Mancuso
,
Henry N.
Chapman
,
Patrik
Vagovic
Diamond Proposal Number(s):
[17739]
Open Access
Abstract: The characterisation of fast phenomena at the microscopic scale is required for the understanding of catastrophic responses of materials to loads and shocks, the processing of materials by optical or mechanical means, the processes involved in many key technologies such as additive manufacturing and microfluidics, and the mixing of fuels in combustion. Such processes are usually stochastic in nature and occur within the opaque interior volumes of materials or samples, with complex dynamics that evolve in all three dimensions at speeds exceeding many meters per second. There is therefore a need for the ability to record three-dimensional X-ray movies of irreversible processes with resolutions of micrometers and frame rates of microseconds. Here we demonstrate a method to achieve this by recording a stereo phase-contrast image pair in a single exposure. The two images are combined computationally to reconstruct a 3D model of the object. The method is extendable to more than two simultaneous views. When combined with megahertz pulse trains of X-ray free-electron lasers (XFELs) it will be possible to create movies able to resolve 3D trajectories with velocities of kilometers per second.
|
May 2023
|
|
E02-JEM ARM 300CF
|
Diamond Proposal Number(s):
[20198]
Open Access
Abstract: Intentionally disordered metal–organic frameworks (MOFs) display rich functional behaviour. However, the characterisation of their atomic structures remains incredibly challenging. X-ray pair distribution function techniques have been pivotal in determining their average local structure but are largely insensitive to spatial variations in the structure. Fe-BTC (BTC = 1,3,5-benzenetricarboxylate) is a nanocomposite MOF, known for its catalytic properties, comprising crystalline nanoparticles and an amorphous matrix. Here, we use scanning electron diffraction to first map the crystalline and amorphous components to evaluate domain size and then to carry out electron pair distribution function analysis to probe the spatially separated atomic structure of the amorphous matrix. Further Bragg scattering analysis reveals systematic orientational disorder within Fe-BTC’s nanocrystallites, showing over 10° of continuous lattice rotation across single particles. Finally, we identify candidate unit cells for the crystalline component. These independent structural analyses quantify disorder in Fe-BTC at the critical length scale for engineering composite MOF materials.
|
May 2023
|
|