I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[23049]
Open Access
Abstract: The persistence of organic carbon (OC) in natural environments is widely attributed to mineral protection, especially by iron (Fe) (oxyhydr)oxides. The effect of OC binding strength on the aging of Fe (oxyhydr)oxides and the mobility and fate of OC during aging however, is unknown. Here we investigate how OC binding strength controls the aging of ferrihydrite (Fh) and subsequent retention or release of the associated OC. We focus on carboxyl-rich OC coprecipitated with Fh and track the physiochemical properties and OC stability as a function of carboxyl-richness over time. In agreement with previous work we find that during carboxyl-rich OC coprecipitation with Fh, OC is adsorbed to the Fh particle surfaces and that increasing carboxyl-richness results in an increasing number of carboxylate-Fe bonds between the OC and the mineral particles and thus increasing OC binding strength. We show that OC substantially retards the aging of Fe (oxyhydr)oxide from Fh to more crystalline Fe minerals and that this retardation increases with increasing OC binding strength. We also show that the total amount of OC decreases during aging and that the proportion of the remaining OC that is non-desorbable with 0.1 M NaOH decreases during aging for OC with relatively low binding strength but increases during aging for OC with relatively high binding strength. Our results therefore indicate that OC with higher binding strength coprecipitated with Fh becomes proportionally more stable with the solid phase and thus less mobile during aging in natural environments. We suggest that our work might offer a deeper mechanistic insight into the processes responsible for OC persistence with minerals and thus the long-term preservation of OC in natural environments.
|
Jul 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[23540]
Open Access
Abstract: Mineral-associated organic matter is an integral part of soil carbon pool. Biological processes contribute to the formation of such organo-mineral complexes when soil microbes, and in particular soil fungi, deposit a suite of extracellular metabolic compounds and their necromass on the mineral surfaces. While studied in bulk, micro- to nanoscale fungal–mineral interactions remain elusive. Of particular interest are the mutual effects at the interface between the fungal exometabolites and proximal mineral particles. In this work, we have grown saprotrophic and symbiotic fungi in contact with two soil minerals with contrasting properties: quartz and goethite, on top of X-ray transparent silicon nitride membrane windows and analyzed fungal hyphae by synchrotron-based scanning transmission X-ray microscopy in combination with near edge X-ray fine structure spectroscopy at C(K) and Fe(L) absorption edges. In the resultant chemical maps, we were able to visualize and differentiate organic compounds constituting the fungal cells, their extracellular metabolites, and the exometabolites adsorbing on the minerals. We found that the composition of the exometabolites differed between the fungal functional guilds, particularly, in their sugar to protein ratio and potassium concentration. In samples with quartz and goethite, we observed adsorption of the exometabolic compounds on the mineral surfaces with variations in their chemical composition around the particles. Although we did not observe clear alteration in the exometabolite chemistry upon mineral encounters, we show that fungal–mineral interaction result in reduction of Fe(III) in goethite. This process has been demonstrated for bulk systems, but, to our knowledge, this is the first observation on a single hypha scale offering insight into its underlying biological mechanisms. This demonstrates the link between processes initiated at the single-cell level to macroscale phenomena. Thus, spatially resolved chemical characterization of the microbial–mineral interfaces is crucial for an increased understanding of overall carbon cycling in soil.
|
Jun 2022
|
|
I08-Scanning X-ray Microscopy beamline (SXM)
|
Diamond Proposal Number(s):
[20839]
Open Access
Abstract: Minerals are widely proposed to protect organic carbon from degradation and thus promote the persistence of organic carbon in soils and sediments, yet a direct link between mineral adsorption and retardation of microbial remineralisation is often presumed and a mechanistic understanding of the protective preservation hypothesis is lacking. We find that methylamines, the major substrates for cryptic methane production in marine surface sediment, are strongly adsorbed by marine sediment clays, and that this adsorption significantly reduces their concentrations in the dissolved pool (up to 40.2 ± 0.2%). Moreover, the presence of clay minerals slows methane production and reduces final methane produced (up to 24.9 ± 0.3%) by a typical methylotrophic methanogen—Methanococcoides methylutens TMA-10. Near edge X-ray absorption fine structure spectroscopy shows that reversible adsorption and occlusive protection of methylamines in clay interlayers are responsible for the slow-down and reduction in methane production. Here we show that mineral-OC interactions strongly control methylotrophic methanogenesis and potentially cryptic methane cycling in marine surface sediments.
|
May 2022
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[18591]
Open Access
Abstract: The adsorption of carboxylic acid molecules at the calcite (104) and the muscovite (001) surface was investigated using surface X-ray diffraction. All four investigated carboxylic acid molecules, hexanoic acid, octanoic acid, lauric acid, and stearic acid, were found to adsorb at the calcite surface. Whereas the shortest two carboxylic acid molecules, hexanoic acid and octanoic acid, showed limited ordering and a flexible, disordered chain, the two longest carboxylic acid molecules form fully ordered monolayers, i.e., these form highly structured self-assembled monolayers. The latter molecules are oriented almost fully upright, with a tilt of up to 10°. The oxygen atoms of the organic molecules are found at similar positions to those of water molecules at the calcite–water interface. This suggests that in both cases, the oxygen atoms compensate for the broken bonds at the calcite surface. Under the same experimental conditions, stearic acid does not adsorb to K+ and Ca2+-functionalized muscovite mica because the neutral molecules do not engage in the ionic bonds typical for the mica interface. These differences in adsorption behavior are characteristic for the differences of the oil–solid interactions in carbonate and sandstone reservoirs.
|
May 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[16025]
Open Access
Abstract: Assessing element speciation and solubility control mechanisms in multi-contaminated soils poses great challenges. In this study, we examined the speciation and mechanisms controlling the solubility of As and Zn in a soil historically contaminated with As, Cu, Cr, and Zn salts used for wood preservation. The leaching behavior of dissolved species, particles, and colloids was studied in an irrigation experiment with intact soil columns. Batch experiments were used to study the solubility of dissolved species as a function of pH (2–8). The speciation of As and Zn in bulk soil and leached particles was studied with microscale X-ray fluorescence (μ-XRF) and extended X-ray absorption fine structure (EXAFS) spectroscopy. Chemical speciation and solubility were evaluated by geochemical modelling. μ-XRF of bulk soil and particles showed that As and Zn were correlated in space. Bulk- and μ-EXAFS of As and Zn, in combination with calculated ion activity products of possible As-Zn minerals, suggested a koritnigite (ZnHAsO4·H2O) phase controlling the dissolved fraction of As(V) and Zn with an apparent log Ksp of −21.9 ± 0.46. This phase lowered the solubility of As by almost two orders of magnitude in soil at pH > 5, and could therefore be of great importance at other multi-contaminated sites.
|
Apr 2022
|
|
|
Open Access
Abstract: The structure of a new polymorph of MgSO4·6H2O, a potentially important mineral on the surface of Europa, one of Jupiter’s icy moons, was reported by Maynard-Casely et al. [Maynard-Casely, H. E.; Brand, H. E.; Wilson, S. A.; Wallwork, K. S. Mineral Diversity on Europa: Exploration of Phases Formed in the MgSO4–H2SO4–H2O Ternary. ACS Earth Space Chem. 2021, 5 (7), 1716−1725. DOI: 10.1021/acsearthspacechem.1c00073]. The reported structure is unambiguously incorrect because the stoichiometry is wrong; the formula unit contains only half of the SO42– oxyanions required. We highlight where this error could have been detected at various stages of the analysis, writeup, and submission process and make recommendations to avoid repetition of the mistake.
|
Apr 2022
|
|
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Abstract: New mineralogical studies of Lafayette reveal that it contains a notably variable abundance of martian carbonate. Four percent was identified in mesostasis (3.2%) and olivine-hosted (0.8%) fractures in one polished section, but only 0.2% of both textural types in another. The Lafayette carbonates are Mg0.0-2.0Cc13.2-38.6Sd17.7-81.9Rh3.1-42.9. They have undergone variable but extensive amounts of dissolution and replacement as the nakhlite secondary fluid evolved, associated with the precipitation of ferric saponite in olivine fractures and a serpentine-like phyllosilicate in the mesostasis. The mesostasis carbonate has undergone the highest degree of corrosion and replacement. TEM analysis has shown the presence of Fe-(hydr)oxide (likely ferrihydrite) nanoparticles on olivine-hosted carbonates which can be linked to the cessation of more extensive carbonate dissolution at those sites. The mesostasis serpentine-like mineral has been described here on the basis of WDS and EDX analyses, HRTEM and Fe-K XANES, as odinite, a ferric, 0.7 nm d001-spacings phyllosilicate mineral with a characteristic 1:1 serpentine-like structure. The carbonate dissolution stage and then formation of Fe-(hydr)oxide nanoparticles occurred under circumneutral-alkaline conditions 7 < pH < 10. This range of pH is also where the general dissolution mechanism switched from a proton-promoted, to a water hydrolysis reaction associated with a reduction in the dissolution rates. As dissolution rates were reduced and the fluid had cooled to ≤50°C, the precipitation of the ferric saponite and odinite, a phyllosilicate associated with temperatures of ∼25°C, dominated over the carbonate dissolution. The extensive dissolution of such crustal carbonate across the upper martian crust, producing bicarbonate and carbon dioxide, and the coupled formation of ferric phyllosilicates, would lead to the formation of CH4 in substantial amounts via a Fischer-Tropsch type reaction. The results of our study illustrate a process to explain the relatively low abundance of detected carbonate on Mars and a likely source for some of the methane on Mars.
|
Feb 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[17782]
Open Access
Abstract: Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.
|
Jan 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[17472]
Open Access
Abstract: Uranium isotopic signatures can be harnessed to monitor the reductive remediation of subsurface contamination or to reconstruct paleo-redox environments. However, the mechanistic underpinnings of the isotope fractionation associated with U reduction remain poorly understood. Here, we present a coprecipitation study, in which hexavalent U (U(VI)) was reduced during the synthesis of magnetite and pentavalent U (U(V)) was the dominant species. The measured δ238U values for unreduced U(VI) (∼−1.0‰), incorporated U (96 ± 2% U(V), ∼−0.1‰), and extracted surface U (mostly U(IV), ∼0.3‰) suggested the preferential accumulation of the heavy isotope in reduced species. Upon exposure of the U-magnetite coprecipitate to air, U(V) was partially reoxidized to U(VI) with no significant change in the δ238U value. In contrast, anoxic amendment of a heavy isotope-doped U(VI) solution resulted in an increase in the δ238U of the incorporated U species over time, suggesting an exchange between incorporated and surface/aqueous U. Overall, the results support the presence of persistent U(V) with a light isotope signature and suggest that the mineral dynamics of iron oxides may allow overprinting of the isotopic signature of incorporated U species. This work furthers the understanding of the isotope fractionation of U associated with iron oxides in both modern and paleo-environments.
|
Jan 2022
|
|
B18-Core EXAFS
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[24074, 21441, 13559]
Open Access
Abstract: Neptunium (237Np) is an important radionuclide in the nuclear fuel cycle in areas such as effluent treatment and the geodisposal of radioactive waste. Due to neptunium’s redox sensitivity and its tendency to adsorb strongly to mineral phases, such as iron oxides/sulfides, the environmental mobility of Np can be altered significantly by a wide variety of chemical processes. Here, Np interactions with key iron minerals, ferrihydrite (Fe5O8H·4H2O), goethite (α-FeOOH), and mackinawite (FeS), are investigated using X-ray Absorption Spectroscopy (XAS) in order to explore the mobility of neptunyl(V) (Np(V)O2+) moiety in environmental (radioactive waste disposal) and industrial (effluent treatment plant) scenarios. Analysis of the Np LIII-edge X-ray Absorption Near-Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) showed that upon exposure to goethite and ferrihydrite, Np(V) adsorbed to the surface, likely as an inner-sphere complex. Interestingly, analysis showed that only the first two shells (Oax and Oeq) of the EXAFS could be modelled with a high degree of confidence, and there was no clear indication of Fe or carbonate in the fits. When Np(V)O2+ was added to a mackinawite-containing system, Np(V) was reduced to Np(IV) and formed a nanocrystalline Np(IV)O2 solid. An analogous experiment was also performed with U(VI)O22+, and a similar reduction was observed, with U(VI) being reduced to nanocrystalline uraninite (U(IV)O2). These results highlight that Np(V) may undergo a variety of speciation changes in environmental and engineered systems whilst also highlighting the need for multi-technique approaches to speciation determination for actinyl (for example, Np(V)O2+) species.
|
Jan 2022
|
|