I12-JEEP: Joint Engineering, Environmental and Processing
|
Alexis
Cartwright-Taylor
,
Maria-Daphne
Mangriotis
,
Ian G.
Main
,
Ian B.
Butler
,
Florian
Fusseis
,
Martin
Ling
,
Edward
Andò
,
Andrew
Curtis
,
Andrew F.
Bell
,
Alyssa
Crippen
,
Roberto E.
Rizzo
,
Sina
Marti
,
Derek D. V.
Leung
,
Oxana V.
Magdysyuk
Diamond Proposal Number(s):
[22517]
Open Access
Abstract: Catastrophic failure in brittle, porous materials initiates when smaller-scale fractures localise along an emergent fault zone in a transition from stable crack growth to dynamic rupture. Due to the rapid nature of this critical transition, the precise micro-mechanisms involved are poorly understood and difficult to image directly. Here, we observe these micro-mechanisms directly by controlling the microcracking rate to slow down the transition in a unique rock deformation experiment that combines acoustic monitoring (sound) with contemporaneous in-situ x-ray imaging (vision) of the microstructure. We find seismic amplitude is not always correlated with local imaged strain; large local strain often occurs with small acoustic emissions, and vice versa. Local strain is predominantly aseismic, explained in part by grain/crack rotation along an emergent shear zone, and the shear fracture energy calculated from local dilation and shear strain on the fault is half of that inferred from the bulk deformation.
|
Oct 2022
|
|
B22-Multimode InfraRed imaging And Microspectroscopy
|
Abstract: Breadcrust bombs are pyroclasts displaying fractured, dense surfaces enveloping expanded interiors, and are associated with Vulcanian explosions. We document pyroclasts from the 2008–2009 CE eruption of Chaitén (Chile) that are internally as well as externally breadcrusted. The pyroclasts are cut by intersecting micrometer- to millimeter-thick tuffisites with dense glassy walls, which grade into strongly inflated pumiceous material. We find H2O diffusion gradients proximal to the breadcrusted surfaces, such that H2O is depleted from far-field magma (0.68 ± 0.04 wt%) into dense, fractured vein walls (0.2–0.3 wt%), indicating a spatial association between H2O mass transfer within the pyroclast interior and both suppressed vesiculation and breadcrusting. We experimentally confirm that diffusive H2O depletion suppresses bubble growth at shallow conduit conditions. Therefore, we interpret the breadcrust formation to be induced by H2O diffusion and the associated rise in viscosity rather than by cooling in the classical breadcrust-formation models. We posit that a “dehydration quench” is important as degassing continues to very low H2O contents in shallow-conduit magma that continues to vesiculate.
|
Jun 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Fabio
Arzilli
,
Margherita
Polacci
,
Giuseppe
La Spina
,
Nolwenn
Le Gall
,
Edward W.
Llewellin
,
Richard A.
Brooker
,
Rafael
Torres-Orozco
,
Danilo
Di Genova
,
David A.
Neave
,
Margaret E.
Hartley
,
Heidy M.
Mader
,
Daniele
Giordano
,
Robert
Atwood
,
Peter D.
Lee
,
Florian
Heidelbach
,
Mike R.
Burton
Diamond Proposal Number(s):
[16188]
Open Access
Abstract: The majority of basaltic magmas stall in the Earth’s crust as a result of the rheological evolution caused by crystallization during transport. However, the relationships between crystallinity, rheology and eruptibility remain uncertain because it is difficult to observe dynamic magma crystallization in real time. Here, we present in-situ 4D data for crystal growth kinetics and the textural evolution of pyroxene during crystallization of trachybasaltic magmas in high-temperature experiments under water-saturated conditions at crustal pressures. We observe dendritic growth of pyroxene on initially euhedral cores, and a surprisingly rapid increase in crystal fraction and aspect ratio at undercooling ≥30 °C. Rapid dendritic crystallization favours a rheological transition from Newtonian to non-Newtonian behaviour within minutes. We use a numerical model to quantify the impact of rapid dendritic crystallization on basaltic dike propagation, and demonstrate its dramatic effect on magma mobility and eruptibility. Our results provide insights into the processes that control whether intrusions lead to eruption or not.
|
Jun 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[21441]
Open Access
Abstract: Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including 79Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescales of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.
|
Apr 2022
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Nolwenn
Le Gall
,
Fabio
Arzilli
,
Giuseppe
La Spina
,
Margherita
Polacci
,
Biao
Cai
,
Margaret E.
Hartley
,
Nghia T.
Vo
,
Robert C.
Atwood
,
Danilo
Di Genova
,
Sara
Nonni
,
Edward W.
Llewellin
,
Mike R.
Burton
,
Peter D.
Lee
Diamond Proposal Number(s):
[12392]
Abstract: Crystallisation is a complex process that significantly affects the rheology of magma, and thus the flow dynamics during a volcanic eruption. For example, the evolution of crystal fraction, size and shape has a strong impact on the surface crust formation of a lava flow, and accessing such information is essential for accurate modelling of lava flow dynamics. To investigate the role of crystallisation kinetics on lava flow behaviour, we performed real-time, in situ synchrotron X-ray microtomography, studying the influence of temperature-time paths on the nucleation and growth of clinopyroxene and plagioclase in an oxidised, nominally anhydrous basaltic magma. Crystallisation experiments were performed at atmospheric pressure in air and temperatures from 1250 °C to 1100 °C, using a bespoke high-temperature resistance furnace. Depending on the cooling regime (single step versus continuous), two different crystal phases (either clinopyroxene or plagioclase) were produced, and we quantified their growth from both global and individual 3D texture analyses. The textural evolution of charges suggests that suppression of crystal nucleation is due to changes in the melt composition with increasing undercooling and time. Using existing viscosity models, we inferred the effect of crystals on the viscosity evolution of our crystal-bearing samples to trace changes in rheological behaviour during lava emplacement. We observe that under continuous cooling, both the onsets of the pāhoehoe-‘a‘ā transition and of non-Newtonian behaviour occur within a shorter time frame. With varying both temperature and time, we also either reproduced or approached the clinopyroxene and plagioclase phenocryst abundances and compositions of the Etna lava used as starting material, demonstrating that real-time synchrotron X-ray tomography is an ideal approach to unravel the final solidification history of basaltic lavas. This imaging technology has indeed the potential to provide input into lava flow models and hence our ability to forecast volcanic hazards.
|
Aug 2021
|
|
I12-JEEP: Joint Engineering, Environmental and Processing
|
Diamond Proposal Number(s):
[15898]
Abstract: The magma stored beneath volcanoes is an evolving mixture of molten rock (liquid), crystals (solid) and bublles (gas). The amount and
distribution of these three phases control how, and if, the magma flows. When magma erupts and cools, it has a very different crystal and
bubble content. As we cannot take a microscope down into the magma beneath a volcano, we need to develop laboratory techniques to understand how and when magma moves.
Previous experiments showed that interactions between the solid particles and gas bubbles control magma’s ability to flow. In this study, researchers recreated flowing magma, using high-speed X-ray imaging on Diamond Light Source’s Joint Engineering Environmental and Processing (JEEP) beamline (I12) to watch these interactions. This research developed the technical tools to look at magma at high magnification during deformation and flow. The 4D data (3 dimensions plus time) showed, for the first time, how much the distribution of bubbles, liquid and crystals changes during flow, how many bubbles coalesce into larger bubbles, and how different regions of the sample behave very differently.
This research is part of a larger project investigating how magma structure at the microscopic scale controls flow. A better understanding of how magma behaves will improve our ability to predict how a volcano will erupt. More widely, magmas are just one example of a complex multi- phase fluid. The methods developed here can be used to investigate other similar systems, such as concrete, ceramics and certain foodstuffs.
|
Jul 2021
|
|
I14-Hard X-ray Nanoprobe
I18-Microfocus Spectroscopy
|
Abstract: Radioactive ‘hot’ particles can be deposited in the environment as a result of illicit activities, nuclear accidents (e.g., Chernobyl, Fukushima), weapons use, mining, and/or nuclear waste disposal. Understanding the long-term behaviour of such materials in the environment is important for understanding risk and environmental impact, and for designing remediation strategies. However, mechanistic knowledge of hot particle alteration processes, reaction products, and radionuclide speciation are limited, especially at finely resolved spatial scales. In this talk, we provide two case-studies that detail how micro- to nano-focus synchrotron X-ray techniques can be used as part of an analytical “tool kit” to fully characterise nuclear industry born hot particles. In turn, this data can inform safety assessments and clean-up / decommissioning efforts at radioactively contaminated sites.
In both case-studies, we examine highly radioactive micro-particles that were found in soil samples taken from nuclear exclusion zone that surrounds the Fukushima Daiichi Nuclear Power Plant (FDNPP). These particles were emitted from the damaged FDNPP reactors during the 2011 accident. Recent work by our group [1, 2] has shown that these particles are common forms of contamination in the nuclear exclusion zone, but the possible environmental and human-health impacts of the particles are not yet known. Recent work [3, 4] on Diamond Light Source Beamlines I18 (micro-focus X-ray spectroscopy) and I14 (Hard X-ray nanoprobe), and the Swiss Light Source micro-XAS Beamline, has permitted detailed chemical characterisation of these challenging materials. In case study 1, we will present micro-focus data that describes the speciation of actinide elements in whole FDNPP hot particles [3]. The data includes the first speciation information for plutonium released from the damaged FDNPP reactors. In case study 2, we present nano-probe characterisation of recently discovered hot particles derived from FDNPP reactor Unit 1 [4]. These particles have the highest ever recorded 134+137Cs radioactivities for particles released from the FDNPP. In our work, FIB sectioning of the particles permitted detailed SIMS, electron microscopy, and hard X-ray nano-probe analysis of the particles. In particular, combined electron-microscopy and synchrotron-based nano-focus XRF and XRD analyses were used to characterise the particles (e.g., Figure 1).
For both case studies we will provide an overview of sample preparation, analysis considerations, and discuss how the results inform management of the FDNPP legacy.
|
Jul 2021
|
|
I14-Hard X-ray Nanoprobe
|
Kazuya
Morooka
,
Eitaro
Kurihara
,
Masato
Takehara
,
Ryu
Takami
,
Kazuki
Fueda
,
Kenji
Horie
,
Mami
Takehara
,
Shinya
Yamasaki
,
Toshihiko
Ohnuki
,
Bernd
Grambow
,
Gareth T. W.
Law
,
Joyce W. I.
Ang
,
William R.
Bower
,
Julia
Parker
,
Rodney
Ewings
,
Satoshi
Utsunomiya
Diamond Proposal Number(s):
[21246]
Abstract: A contaminated zone elongated toward Futaba Town, north-northwest of the Fukushima Daiichi Nuclear Power Plant (FDNPP), contains highly radioactive particles released from reactor Unit 1. There are uncertainties associated with the physio-chemical properties and environmental impacts of these particles. In this study, 31 radioactive particles were isolated from surface soils collected 3.9 km north-northwest of the FDNPP. Two of these particles have the highest particle-associated 134+137Cs activity ever reported for Fukushima (6.1 × 105 and 2.5 × 106 Bq per particle after decay-correction to March, 2011). The new, highly-radioactive particle labeled FTB1 is an aggregate of flaky silicate nanoparticles with an amorphous structure containing ~0.8 wt% Cs, occasionally associated with SiO2 and TiO2 inclusions. FTB1 likely originates from the reactor building, which was damaged by a H2 explosion, after adsorbing volatilized Cs. The 134+137Cs activity in the other highly radioactive particle labeled FTB26 exceeded 106 Bq. FTB26 has a glassy carbon core and a surface that is embedded with numerous micro-particles: Pb–Sn alloy, fibrous Al-silicate, Ca-carbonate or hydroxide, and quartz. The isotopic signatures of the micro-particles indicate neutron capture by B, Cs volatilization, and adsorption of natural Ba. The composition of the micro-particles on FTB26 reflects the composition of airborne particles at the moment of the H2 explosion. Owing to their large size, the health effects of the highly radioactive particles are likely limited to external radiation during static contact with skin; the highly radioactive particles are thus expected to have negligible health impacts for humans. By investigating the mobility of the highly radioactive particles, we can better understand how the radiation dose transfers through environments impacted by Unit 1. The highly radioactive particles also provide insights into the atmospheric conditions at the time of the Unit 1 explosion and the physio-chemical phenomena that occurred during reactor meltdown.
|
Feb 2021
|
|
I04-Macromolecular Crystallography
|
Abstract: The anaerobic bacterium Chrysiogenes arsenatis respires using the oxyanion arsenate (AsO43–) as the terminal electron acceptor, where it is reduced to arsenite (AsO33–) while concomitantly oxidizing various organic (e.g., acetate) electron donors. This respiratory activity is catalyzed in the periplasm of the bacterium by the enzyme arsenate reductase (Arr), with expression of the enzyme controlled by a sensor histidine kinase (ArrS) and a periplasmic-binding protein (PBP), ArrX. Here, we report for the first time, the molecular structure of ArrX in the absence and presence of bound ligand arsenate. Comparison of the ligand-bound structure of ArrX with other PBPs shows a high level of conservation of critical residues for ligand binding by these proteins; however, this suite of PBPs shows different structural alterations upon ligand binding. For ArrX and its homologue AioX (from Rhizobium sp. str. NT-26), which specifically binds arsenite, the structures of the substrate-binding sites in the vicinity of a conserved and critical cysteine residue contribute to the discrimination of binding for these chemically similar ligands.
|
Feb 2021
|
|
I13-1-Coherence
I18-Microfocus Spectroscopy
|
Peter
Martin
,
Christopher P.
Jones
,
Stuart
Bartlett
,
Konstantin
Ignatyev
,
Dave
Megson-Smith
,
Yukihiko
Sato
,
Silvia
Cipiccia
,
Darren J.
Batey
,
Christoph
Rau
,
Keisuke
Sueki
,
Tatsuya
Ishii
,
Junya
Igarashi
,
Kazuhiko
Ninomiya
,
Atsushi
Shinohara
,
Alison
Rust
,
Thomas B.
Scott
Diamond Proposal Number(s):
[24769, 19881]
Open Access
Abstract: The structural form and elemental distribution of material originating from different Fukushima Daiichi Nuclear Power Plant reactors (Units 1 and 3) is hereby examined to elucidate their contrasting release dynamics and the current in-reactor conditions to influence future decommissioning challenges. Complimentary computed X-ray absorption tomography and X-ray fluorescence data show that the two suites of Si-based material sourced from the different reactor Units have contrasting internal structure and compositional distribution. The known event and condition chronology correlate with the observed internal and external structures of the particulates examined, which suggest that Unit 1 ejecta material sustained a greater degree of melting than that likely derived from reactor Unit 3. In particular, we attribute the near-spherical shape of Unit 1 ejecta and their internal voids to there being sufficient time for surface tension to round these objects before the hot (and so relatively low viscosity) silicate melt cooled to form glass. In contrast, a more complex internal form associated with the sub-mm particulates invoked to originate from Unit 3 suggest a lower peak temperature, over a longer duration. Using volcanic analogues, we consider the structural form of this material and how it relates to its environmental particulate stability and the bulk removal of residual materials from the damaged reactors. We conclude that the brittle and angular Unit 3 particulate are more susceptible to further fragmentation and particulate generation hazard than the round, higher-strength, more homogenous Unit 1 material.
|
Dec 2020
|
|