B21-High Throughput SAXS
I04-1-Macromolecular Crystallography (fixed wavelength)
Krios IV-Titan Krios IV at Diamond
|
Anokhi
Shah
,
Xiaoli
Zhang
,
Matthew
Snee
,
Michael P.
Lockhart-Cairns
,
Colin W.
Levy
,
Thomas A.
Jowitt
,
Holly L.
Birchenough
,
Louisa
Dean
,
Richard
Collins
,
Rebecca J.
Dodd
,
Abigail R. E.
Roberts
,
Jan J.
Enghild
,
Alberto
Mantovani
,
Juan
Fontana
,
Clair
Baldock
,
Antonio
Inforzato
,
Ralf P.
Richter
,
Anthony J.
Day
Diamond Proposal Number(s):
[22724, 29338, 17773, 24447]
Open Access
Abstract: Pentraxin-3 (PTX3) is an octameric protein, comprised of eight identical protomers, that has diverse functions in reproductive biology, innate immunity and cancer. PTX3 interacts with the large polysaccharide hyaluronan (HA) to which heavy chains (HCs) of the inter-α-inhibitor (IαI) family of proteoglycans are covalently attached, playing a key role in the (non-covalent) crosslinking of HC•HA complexes. These interactions stabilise the cumulus matrix, essential for ovulation and fertilisation in mammals, and are also implicated in the formation of pathogenic matrices in the context of viral lung infections. To better understand the physiological and pathological roles of PTX3 we have analysed how its quaternary structure underpins HA crosslinking via its interactions with HCs. A combination of X-ray crystallography, cryo-electron microscopy (cryo-EM) and AlphaFold predictive modelling revealed that the C-terminal pentraxin domains of the PTX3 octamer are arranged in a central cube, with two long extensions on either side, each formed from four protomers assembled into tetrameric coiled-coil regions, essentially as described by (Noone et al., 2022; doi:10.1073/pnas.2208144119). From crystallography and cryo-EM data, we identified a network of inter-protomer salt bridges that facilitate the assembly of the octamer. Small angle X-ray scattering (SAXS) validated our model for the octameric protein, including the analysis of two PTX3 constructs: a tetrameric ‘Half-PTX3’ and a construct missing the 24 N-terminal residues (Δ1-24-PTX3). SAXS determined a length of ∼520 Å for PTX3 and, combined with 3D variability analysis of cryo-EM data, defined the flexibility of the N-terminal extensions. Biophysical analyses revealed that the prototypical heavy chain HC1 does not interact with PTX3 at pH 7.4, consistent with our previous studies showing that, at this pH, PTX3 only associates with HC•HA complexes if they are formed in its presence. However, PTX3 binds to HC1 at acidic pH, and can also be incorporated into pre-formed HC•HA complexes under these conditions. This provides a novel mechanism for the regulation of PTX3-mediated HA crosslinking (e.g., during inflammation), likely mediated by a pH-dependent conformational change in HC1. The PTX3 octamer was found to associate simultaneously with up to eight HC1 molecules and, thus, has the potential to form a major crosslinking node within HC•HA matrices, i.e., where the physical and biochemical properties of resulting matrices could be tuned by the HC/PTX3 composition.
|
Jan 2025
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[36844]
Open Access
Abstract: A series of novel chain-extended polyurethanes (CEPUs) featuring degradable sulfonyl ethyl urethane chain-extenders that permit degradation under base-triggered conditions to afford “debond-on-demand” elastomeric adhesives are reported. Exposure of the CEPUs to tetra-butylammonium fluoride (TBAF) triggered the degradation of the sulfonyl ethyl urethane chain-extenders. Lap shear adhesion tests of the CEPUs exposed to TBAF revealed reductions in shear strength of up to 65% for both aluminum and glass substrates, from 2.18 to 0.76 MPa and from 1.13 to 0.52 MPa, respectively. The selective depolymerization of these polymers makes them suitable candidates as debondable binders for inkjet inks and coatings, enabling removal of inks and adhesive residues from substrates before they enter the recycling process, to prevent surface contaminants decreasing the quality of the recycled material.
|
Jan 2025
|
|
B21-High Throughput SAXS
|
Open Access
Abstract: The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer’s disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation. Integrating NMR spectroscopy, SAXS, molecular docking, and site-directed mutagenesis we reveal the structural basis of the p23-FKBP51 complex. We show that p23 specifically recognizes the TPR domain of FKBP51 and interacts with tau through its C-terminal disordered tail. We further show that the p23-FKBP51 complex binds tau to form a dynamic p23-FKBP51-tau trimeric complex that delays tau aggregation and thus may counteract Hsp90-FKBP51 mediated toxicity. Taken together, our findings reveal a co-chaperone mediated Hsp90-independent chaperoning of tau protein.
|
Jan 2025
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[36553]
Open Access
Abstract: The efficiency of organic solar cells has raised drastically in the past years. However, there is an undeniable lack of hole transport layers that can provide high carrier selectivity, low defect density, and high processing robustness, simultaneously. In this work, this issue is addressed by studying defect generation and surface passivation of nickel oxide (NiOx). It is revealed that the generation of high oxidation state species on NiOx surface lowers contact resistance but hinders charge extraction when employed as transport layer in organic solar cells. By using them as coordination centers, a straightforward surface modification strategy is implemented using (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) that enhances charge extraction and increases the solar cell efficiency from 11.46% to 17.12%. Additionally, the robustness of this modification across different deposition methods of the carbazole molecule is demonstrated. Finally, by fine-tuning the Fermi level using various carbazole-based molecules, and in particular with ((4-(7H-dibenzo[c,g]carbazol-7-yl)butyl)phosphonic acid (4PADCB), a power conversion efficiency of 17.29% is achieved, with an outstanding combination of a VOC of 0.888 V and a fill factor of 80%.
|
Jan 2025
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[32266]
Abstract: Organic solar cells (OSCs) are attracting significant attention due to their low cost, lightweight, and flexible nature. The introduction of nonfullerene acceptors (NFAs) has propelled OSC development into a transformative era. However, the limited availability of wide band gap polymer donors for NFAs poses a critical challenge, hindering further advancements. This study examines the role of developed wide band gap halogenated pyrrolo[3,4-c]pyrrole-1,3(2H,5H)-dione (PPD)-based polymers, in combination with the Y6 nonfullerene acceptor, in bulk heterojunction (BHJ) OSCs. We first focus on the electronic and absorbance modifications brought about by halogen substitution in PPD-based polymers, revealing how these adjustments influence the HOMO/LUMO energy levels and, subsequently, photovoltaic performance. Despite the increased Voc of halogenated polymers due to the optimal band alignment, power conversion efficiencies (PCEs) were decreased due to suboptimal blend morphologies. We second implemented PPD as a solid additive to PM6:Y6, forming ternary OSCs and further improving the PCE. The study provides a nuanced understanding of the interplay between molecular design, device morphology, and OSC performance and opens insights for future research to achieve an optimal balance between band alignment and favorable blend morphology for high-efficiency OSCs.
|
Jan 2025
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Diamond Proposal Number(s):
[32023]
Open Access
Abstract: Activation of oxygen anion redox represents an effective method of increasing the specific capacity as well as raising the operating voltage of layered sodium transition metal oxides. However, these reactions are often accompanied by irreversible structural transformations and detrimental side‑reactions between the electrolyte and electrode interface which accelerate degradation, thereby impeding their practical application. To optimise the oxygen anion reversibility for practical use and compare the effects of dopants, we investigated Zn- and Ti-substitution both separately and combined in P3‑structure Na0.7Mn0.75Ni0.25O2, assisted by DFT calculations. The Zn-substituted materials, Na0.7Mn0.65Ni0.25Zn0.1O2 and Na0.7Mn0.58Ni0.25Zn0.07Ti0.1O2 present superior cycling stability over the high voltage range 3.8-4.3 V and enhanced rate capability, delivering a reversible capacity of ~80 mA h g‑1 at 500 mA g‑1 over the voltage window 2.2‑4.3 V compared with 58.6 mA h g-1 for the parent-phase. The improved electrochemical performance of the Zn-substituted materials is attributed to suppression of the P3 to O’3 phase transformation revealed by X‑ray diffraction and the lower electronegativity and filled d ‑band of Zn. The presence of TiO6 octahedra in the Ti-substituted materials relieves structural distortions/TM ordering, also improving the cycling stability. With Zn/Ti co-substitution these advantages may be combined, as demonstrated by the superior electrochemical performance observed for Na0.7Mn0.58Ni0.25Zn0.07Ti0.1O2.
|
Jan 2025
|
|
B21-High Throughput SAXS
I22-Small angle scattering & Diffraction
|
Mohamed A. N.
Soliman
,
Abdulwahhab
Khedr
,
Tarsem
Sahota
,
Rachel
Armitage
,
Raymond
Allan
,
Katie
Laird
,
Natalie
Allcock
,
Fatmah I.
Ghuloum
,
Mahetab H.
Amer
,
Reem
Alazragi
,
Charlotte J. C.
Edwards-Gayle
,
Jacek K.
Wychowaniec
,
Attilio V.
Vargiu
,
Mohamed A.
Elsawy
Diamond Proposal Number(s):
[28287, 28806]
Open Access
Abstract: Guiding molecular assembly of peptides into rationally engineered nanostructures remains a major hurdle against the development of functional peptide-based nanomaterials. Various non-covalent interactions come into play to drive the formation and stabilization of these assemblies, of which electrostatic interactions are key. Here, the atomistic mechanisms by which electrostatic interactions contribute toward controlling self-assembly and lateral association of ultrashort β-sheet forming peptides are deciphered. Our results show that this is governed by charge distribution and ionic complementarity, both affecting the interaction patterns between charged residues: terminal, core, and/or terminal-to-core attraction/repulsion. Controlling electrostatic interactions enabled fine-tuning nanofiber morphology for the 16 examined peptides, resulting into versatile nanostructures ranging from extended thin fibrils and thick bundles to twisted helical “braids” and short pseudocrystalline nanosheets. This in turn affected the physical appearance and viscoelasticity of the formed materials, varying from turbid colloidal dispersions and viscous solutions to soft and stiff self-supportive hydrogels, as revealed from oscillatory rheology. Atomistic mechanisms of electrostatic interaction patterns were confirmed by molecular dynamic simulations, validating molecular and nanoscopic characterization of the developed materials. In essence, detailed mechanisms of electrostatic interactions emphasizing the impact of charge distribution and ionic complementarity on self-assembly, nanostructure formation, and hydrogelation are reported.
|
Jan 2025
|
|
I21-Resonant Inelastic X-ray Scattering (RIXS)
|
Zhengang
Dong
,
Marios
Hadjimichael
,
Bernat
Mundet
,
Jaewon
Choi
,
Charles C.
Tam
,
Mirian
Garcia-Fernandez
,
Stefano
Agrestini
,
Claribel
Domínguez
,
Regan
Bhatta
,
Yue
Yu
,
Yufeng
Liang
,
Zhenping
Wu
,
Jean-Marc
Triscone
,
Chunjing
Jia
,
Ke-Jin
Zhou
,
Danfeng
Li
Diamond Proposal Number(s):
[32305]
Abstract: Superconductivity in infinite-layer nickelates has stirred much research interest, to which questions regarding the nature of superconductivity remain elusive. A critical leap forward to address these intricate questions is through the growth of high-crystallinity infinite-layer nickelates, including the “parent” phase. Here, we report the synthesis of a high-quality thin-film nickelate, NdNiO2. This is achieved through the growth of a perovskite precursor phase (NdNiO3) of superior crystallinity on the NdGaO3 substrate by off-axis RF magnetron sputtering and a low-temperature topochemical reduction using NaH. We observe a nonlinear Hall effect at low temperatures in this “non-doped” phase. We further study the electronic properties using advanced X-ray scattering and first-principles calculations. We observe spectroscopic indications of the enhanced two-dimensionality and a reduced hybridization of Nd 5d and Ni 3d orbitals. These findings unlock new pathways for preparing high-quality infinite-layer nickelates and provide new insights into the intrinsic features of these compounds.
|
Jan 2025
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[29651]
Open Access
Abstract: Degradation tests are a key step in the development of a bioresorbable stent. The present study focused on the degradation of bioresorbable stents made from PLLA filaments, and examined the variation of the physical, thermal, and mechanical properties of the material and the devices under both real-time and accelerated degradation conditions. Results showed that the undegraded filaments were highly crystalline and composed by both
and
crystalline phases, induced by both the melt spinning and heat treatment processes. The latter was shown to have an important influence on the further formation of
crystalline phase and therefore crystalline structure perfectioning. Real-time degradation tests showed that the devices maintained structural stability for up to a year, meeting the required 6-month degradation period for vascular stents. Degradation was shown to primarily affect the crystalline regions, and to cause a gradual loss of material ductility before any mass loss or decrease in crystallinity. In turn, a constant decrease of molecular weight was observed, with stent failure occurring around day 389 due to a drop in molecular weight below 10,000 g/mol. Accelerated degradation tests mirrored real-time results until mass loss began. Subsequently a slower molecular weight decrease was observed, with an increase and subsequent decrease of material crystallinity. The consistency of the data obtained between real-time and accelerated degradation before mass loss confirmed the possibility to gain insights into real-time degradation through an accelerated protocol. However, attention must be paid to the initial molecular weight of the material, which has been shown to highly influence the acceleration rate. This study provides a wide range of experimental data both on the real-time and thermally accelerated degradation behaviour of PLLA braided stents that can be used as benchmark for further studies in the field.
|
Dec 2024
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[21663]
Open Access
Abstract: Atmospheric aerosol hygroscopicity and reactivity play key roles in determining an aerosol's fate and are strongly affected by its composition and physical properties. Fatty acids are surfactants commonly found in organic aerosol emissions. They form a wide range of different nanostructures dependent on water content and mixture composition. In this study we follow nano-structural changes in mixtures frequently found in urban organic aerosol emissions, i.e. oleic acid, sodium oleate and fructose, during humidity change and exposure to the atmospheric oxidant ozone. Addition of fructose altered the nanostructure by inducing molecular arrangements with increased surfactant–water interface curvature. Small-angle X-ray scattering (SAXS) was employed for the first time to derive the hygroscopicity of each nanostructure, thus addressing a current gap in knowledge by measuring time- and humidity-resolved changes in nano-structural parameters. We found that hygroscopicity is directly linked to the specific nanostructure and is dependent on the nanostructure geometry. Reaction with ozone revealed a clear nanostructure–reactivity trend, with notable differences between the individual nanostructures investigated. Simultaneous Raman microscopy complementing the SAXS studies revealed the persistence of oleic acid even after extensive oxidation. Our findings demonstrate that self-assembly of fatty acid nanostructures can significantly impact two key atmospheric aerosol processes: water uptake and chemical reactivity, thus directly affecting the atmospheric lifetime of these materials. This could have significant impacts on both urban air quality (e.g. protecting harmful urban emissions from atmospheric degradation and therefore enabling their long-range transport) and climate (e.g. affecting cloud formation), with implications for human health and well-being.
|
Dec 2024
|
|