I07-Surface & interface diffraction
|
Cem
Ornek
,
Fan
Zhang
,
Alfred
Larsson
,
Mubashir
Mansoor
,
Gary S.
Harlow
,
Robin
Kroll
,
Francesco
Carla
,
Hadeel
Hussain
,
Dirk L.
Engelberg
,
Bora
Derin
,
Jinshan
Pan
Diamond Proposal Number(s):
[23388]
Open Access
Abstract: The passive film stability on stainless steel can be affected by hydrogen absorption and lead to microstructure embrittlement. This work shows that the absorption of hydrogen results in surface degradation due to oxide reduction and ionic defect generation within the passive film, which decomposes and eventually vanishes. The passive film provides a barrier to entering hydrogen, but when hydrogen is formed, atomic hydrogen infuses into the lattices of the austenite and ferrite phases, causing strain evolution, as shown by synchrotron x-ray diffraction data. The vacancy concentration and hence the strains increase with increasing electrochemical cathodic polarization. Under cathodic polarization, the surface oxides are thermodynamically unstable, but the complete reduction is kinetically restrained. As a result, surface oxides remain present under excessive cathodic polarization, contesting the classical assumption that oxides are easily removed. Density-functional theory calculations have shown that the degradation of the passive film is a reduction sequence of iron and chromium oxide, which causes thinning and change of the semiconductor properties of the passive film from n-type to p-type. As a result, the surface loses its passivity after long cathodic polarization and becomes only a weak barrier to hydrogen absorption and hence hydrogen embrittlement.
|
Aug 2023
|
|
I10-Beamline for Advanced Dichroism
|
Open Access
Abstract: Element-specific spectroscopies using synchrotron-radiation can provide unique insights into materials properties. The recently developed technique of X-ray detected ferromagnetic resonance (XFMR) allows studying the magnetization dynamics of magnetic spin structures. Magnetic sensitivity in XFMR is obtained from the X-ray magnetic circular dichroism (XMCD) effect, where the phase of the magnetization precession of each magnetic layer with respect to the exciting radio frequency is obtained using stroboscopic probing of the spin precession. Measurement of both amplitude and phase response in the magnetic layers as a function of bias field can give a clear signature of spin-transfer torque (STT) coupling between ferromagnetic layers due to spin pumping. In the last few years, there have been new developments utilizing X-ray scattering techniques to reveal the precessional magnetization dynamics of ordered spin structures in the GHz frequency range. The techniques of diffraction and reflectometry ferromagnetic resonance (DFMR and RFMR) provide novel ways for the probing of the dynamics of chiral and multilayered magnetic materials, thereby accessing key information relevant to the engineering and development of high-density and low-energy consumption data processing solutions.
|
Jul 2023
|
|
I05-ARPES
|
A. Garrison
Linn
,
Peipei
Hao
,
Kyle N.
Gordon
,
Dushyant
Narayan
,
Bryan S.
Berggren
,
Nathaniel
Speiser
,
Sonka
Reimers
,
Richard P.
Campion
,
Vít
Novák
,
Sarnjeet S.
Dhesi
,
Timur K.
Kim
,
Cephise
Cacho
,
Libor
Šmejkal
,
Tomáš
Jungwirth
,
Jonathan D.
Denlinger
,
Peter
Wadley
,
Daniel S.
Dessau
Diamond Proposal Number(s):
[24224]
Open Access
Abstract: Tetragonal CuMnAs is a room temperature antiferromagnet with an electrically reorientable Néel vector and a Dirac semimetal candidate. Direct measurements of the electronic structure of single-crystalline thin films of tetragonal CuMnAs using angle-resolved photoemission spectroscopy (ARPES) are reported, including Fermi surfaces (FS) and energy-wavevector dispersions. After correcting for a chemical potential shift of ≈− 390 meV (hole doping), there is excellent agreement of FS, orbital character of bands, and Fermi velocities between the experiment and density functional theory calculations. In addition, 2×1 surface reconstructions are found in the low energy electron diffraction (LEED) and ARPES. This work underscores the need to control the chemical potential in tetragonal CuMnAs to enable the exploration and exploitation of the Dirac fermions with tunable masses, which are predicted to be above the chemical potential in the present samples.
|
May 2023
|
|
I09-Surface and Interface Structural Analysis
|
Maria
Basso
,
Elena
Colusso
,
Chiara
Carraro
,
Curran
Kalha
,
Aysha A.
Riaz
,
Giada
Bombardelli
,
Enrico
Napolitani
,
Yu
Chen
,
Jacek
Jasieniak
,
Laura E.
Ratcliff
,
Pardeep K.
Thakur
,
Tien-Lin
Lee
,
Anna
Regoutz
,
Alessandro
Martucci
Diamond Proposal Number(s):
[29451]
Abstract: The thermochromic properties of vanadium dioxide (VO2) offer great advantages for energy-saving smart windows, memory devices, and transistors. However, the crystallization of solution-based thin films at temperatures lower than 400°C remains a challenge. Photonic annealing has recently been exploited to crystallize metal oxides, with minimal thermal damage to the substrate and reduced manufacturing time. Here, VO2 thin films, obtained via a green sol-gel process, were crystallized by pulsed excimer laser annealing. The influence of increasing laser fluence and pulse number on the film properties was systematically studied through optical, structural, morphological, and chemical characterizations. From temperature profile simulations, the temperature rise was confirmed to be confined within the film during the laser pulses, with negligible substrate heating. Threshold laser parameters to induce VO2 crystallization without surface melting were found. With respect to furnace annealing, both the crystallization temperature and the annealing time were substantially reduced, with VO2 crystallization being achieved within only 60 s of laser exposure. The laser processing was performed at room temperature in air, without the need of a controlled atmosphere. The thermochromic properties of the lasered thin films were comparable with the reference furnace-treated samples.
|
May 2023
|
|
|
Abstract: The epitaxial growth of anatase (001) films deposited by pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) on SrTiO3 (001) (STO) single crystals has been studied using X-ray diffraction and surface sensitivity UHV techniques. The evolution of the strain represented by the microstrain and the change of the in-plane and out-of-plane lattice parameters with film growth temperature, the effect of the annealing temperature and the influence of the oxygen content of the film have been investigated.
The out-of-plane lattice strain shows a compressive (-0.2%) or expansive (+0.3%) behavior, in the range 600 - 900°C, for temperatures below or above 700°C, respectively. The in-plane lattice parameters, as well as the cell volume of the film, remain under compression over the entire temperature range explored.
PLD films grow into square islands that align with the surface lattice directions of the STO substrate. The maximum size of these islands is reached at growth temperatures close to 875-925°C. Film annealing at temperatures of 800°C or higher melts the islands into flat terraces. Larger terraces are reached at high annealing temperatures of 925°C for extended periods of 12 hours. This procedure allows flat surface terrace sizes of up to 650 nm to be achieved.
The crystalline quality achieved in anatase films prepared by PLD or MBE growth methods is similar. The two-step anatase growth process used during the synthesis of the films with both methods: film growth and post-annealing treatment in oxygen or air at ambient pressure, using temperature and time as key parameters, allows to control the surface terrace size and stoichiometry of the films, as well as the anatase/rutile intermixing rates at sufficiently high temperatures. This growth process could allow the substitution of their equivalent single crystals. The range of applicability of these films would include their use as structural and electronic model systems, or in harsh experimental conditions due to their low production cost.
|
May 2023
|
|
|
Open Access
Abstract: All-optical control of terahertz pulses is essential for the development of optoelectronic devices for next-generation quantum technologies. Despite substantial research in THz generation methods, polarization control remains difficult. Here, we demonstrate that by exploiting band structure topology, both helicity-dependent and helicity-independent THz emission can be generated from nanowires of the topological Dirac semimetal Cd3As2. We show that narrowband THz pulses can be generated at oblique incidence by driving the system with optical (1.55 eV) pulses with circular polarization. Varying the incident angle also provides control of the peak emission frequency, with peak frequencies spanning 0.21–1.40 THz as the angle is tuned from 15 to 45°. We therefore present Cd3As2 nanowires as a promising novel material platform for controllable terahertz emission.
|
Apr 2023
|
|
I09-Surface and Interface Structural Analysis
|
Aleksandr
Baklanov
,
Johannes T.
Kuchle
,
David A.
Duncan
,
Reinhard J.
Maurer
,
Martin
Schwarz
,
Eduardo Corral
Rascon
,
Ignacio
Piquero-Zulaica
,
Huynh Thien
Ngo
,
Alexander
Riss
,
Francesco
Allegretti
,
Willi
Auwärter
,
Paul T. P.
Ryan
Diamond Proposal Number(s):
[18874, 24276]
Abstract: We present a comprehensive, quantitative multimethod characterization of the geometric and electronic interfacial structure of zinc-porphine (Zn-P) on coinage metal supports, namely, Ag(111) and Cu(111). Complementary techniques including X-ray standing waves, X-ray photoelectron spectroscopy, scanning tunneling microscopy, bond-resolved atomic force microscopy, and density functional theory calculations reveal the molecular conformations, signal a temperature-dependence of element-specific adsorption heights, rule out a decisive role of the d10 nature of the Zn center for the adsorption configuration, and uncover a considerably increased Zn-P adsorption height on Ag(111) compared to Cu(111). Furthermore, a pronounced out-of-plane displacement of the Zn center upon water ligation is demonstrated, a manifestation of the surface trans-effect. This study thus sheds light on effects of temperature, chemical nature of the metal center, its ligation, and the coinage metal support on interfacial structure and molecular deformation of an archetypical surface-anchored metal-tetrapyrrole.
|
Apr 2023
|
|
I07-Surface & interface diffraction
|
Diamond Proposal Number(s):
[22995]
Open Access
Abstract: Hypothesis: The attractive interaction between a cationic surfactant monolayer at the air–water interface and vesicles, incorporating anionic lipids, is sufficient to drive the adsorption and deformation of the vesicles. Osmotic rupture of the vesicles produces a continuous lipid bilayer beneath the monolayer. Experimental: Specular neutron reflectivity has been measured from the surface of a purpose-built laminar flow trough, which allows for rapid adsorption of vesicles, the changes in salt concentration required for osmotic rupture of the adsorbed vesicles into a bilayer, and for neutron contrast variation of the sub-phase without disturbing the monolayer. Findings: The neutron reflectivity profiles measured after vesicle addition are consistent with the adsorption and flattening of the vesicles beneath the monolayer. An increase in the buffer salt concentration results in further flattening and fusion of the adsorbed vesicles, which are ruptured by a subsequent decrease in the salt concentration. This process results in a continuous, high coverage, bilayer suspended 11 Å beneath the monolayer. As the bilayer is not constrained by a solid substrate, this new mimetic is well-suited to studying the structure of lipid bilayers that include transmembrane proteins.
|
Mar 2023
|
|
E01-JEM ARM 200CF
|
Diamond Proposal Number(s):
[30159, 31872]
Abstract: Disorder in organic semiconductors (OSCs) plays a determining role in energy transport properties underpinning optoelectronic device performance [1]. Both energetic disorder native to perfect crystals as well as deviations from crystalline order control transport properties [2,3]. Alongside crystallographic defects like stacking faults and grain boundaries, dislocations that distort molecular packing can introduce exciton- or charge-carrier traps that significantly hamper intermolecular energy transport [4]. Electron microscopy has been a mainstay for probing these crystallographic defects in inorganic semiconductors. Recent progress in atomically resolved electron microscopy has enabled imaging of individual defects in hybrid perovskites [5]. But while hybrid perovskites show structural degradation on the order of <200 e–Å-2 before [6], small molecule OSCs may undergo comparable loss of structure under exposures <30 e–Å-2 [7,8]. Methods that enable the crystallographic analysis of dislocations in beam-sensitive OSCs are therefore a necessary first step to establish their performance effects.
A dislocation is described crystallographically in terms of a displacement vector in the lattice, termed a Burgers vector b. Most attempts to characterize dislocations in organic molecular crystals have relied on techniques at low spatial resolution, including etch pit imaging [9] and scanning probe techniques [10]. These approaches are unable to directly record the crystallography of dislocations or access the nanometre spatial resolution required to isolate individual defects. In contrast, electron microscopy combines the necessary spatial resolution to image the dislocation line as well as the crystallographic detail from electron diffraction to retrieve the Burgers vector. Typically, such an analysis is carried out by many repeated electron beam exposures and sample rotations aimed at identifying the crystal planes associated with a diffraction vector g that are not distorted by the dislocation, a so-called ‘invisibility criterion’ at g.b = 0. Here, we advance this approach for OSCs to carry out unambiguous analysis of the dislocation Burgers vector and type (screw, edge, or mixed) using four-dimensional scanning transmission electron microscopy (4D-STEM) now in a single exposure at a fluence of ~10 e–Å-2.
Thin films of p-terphenyl and anthracene were prepared by solution crystallization as a set of benchmark organic optoelectronic materials [11]. On transfer to a lacey carbon support film for electron microscopy, the draping of the OSC crystals on the support film introduces a small amount of sample bending. This bending defines a set of diffraction conditions that produce ribbons of bright intensity running across images of the film referred to as bend contours. These bend contours exhibit an abrupt shift or break on crossing dislocations unless they satisfy the invisibility criterion. Our 4D-STEM approach specifically supports simultaneous analysis of many lattice planes approximately parallel to the crystal direction perpendicular to the film, i.e. [001] for p-terphenyl and [101] for anthracene. Plotting and fitting the magnitude of breaks in the bend contours as a function of the corresponding diffraction vectors (g) for each plane determines the Burgers vector. For instance, this analysis establishes mixed-type b = [010] dislocations in p-terphenyl and anthracene. These generalizable methods make an analysis of the Burgers vectors of dislocations in beam-sensitive OSC films a routine process. The capability to measure the character and type of dislocations will provide experimental input for models of distortions at these structural defects and enables assessing methods for inhibiting dislocation formation during crystal growth and reducing or removing their deleterious contributions to device performance.
|
Mar 2023
|
|
|
Open Access
Abstract: We studied the impact of achiral substituents on the chiral supramolecular architectures of diketopyrrolo[3,4-c]pyrrole–1,2,3-1H-triazole (DPP) dyes. We decorated the same chiral DPP motif with substituent groups on the nitrogen atoms of the lactam moiety: the hydrophobic n-octyl alkyl chain, the hydrophilic triethylene glycol (TEG) chain and the thermo-cleavable t-butoxycarbonyl (t-Boc) carbamate group. In spite of identical conjugated chromophore and chiral appendage, in aggregated form the three dyes displayed profoundly different optical, chiroptical, electrochemical and thermal features. ECD measurements revealed differences in the aggregation modes, which would be inaccessible by most other techniques. We found strong chiroptical features, which would have major implications in the context of chiral organic opto-electronics and in the development of other highly innovative technological applications.
|
Mar 2023
|
|