I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[17053]
Abstract: Background: The bioavailable supply of copper to ruminants has long been problematic. Complexities in supply exist due to interactions with other dietary elements in the rumen, most notably with iron or molybdenum in combination with sulphur, which can result in copper binding preventing its absorption. The molybdenum-sulphur-copper interaction has been extensively studied over the years. However, very little is known about the iron-sulphur-copper interaction, especially its mode of action in the gastrointestinal tract. Methods In the present work digesta from the rumen and jejunum of sheep fed a high copper, sulphur and iron diet was analysed using X-ray absorption spectroscopy (XAS). Results: X-ray absorption fine structure (XAFS) and X-ray absorption near edge structure (XANES) indicated that all of the copper and iron had changed in bonding in the rumen and that the oxidation state of the elements had been reduced into a mix of Fe2+ & Fe3+ and Cu+ with some Cu0. Conclusion: The copper compounds were most likely to be thiol co-ordinated in line with Cu+ chemistry. Changes to the copper compounds took place in the jejunum, although thiols were still highly favoured the possible existence of a copper-iron-sulphur complex which also included oxygen and chloride was also observed. This possibly has some resemblance to the crystal structure of bornite.
|
Jul 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[19081]
Open Access
Abstract: The protective carapace of Skogsbergia lerneri, a marine ostracod, is scratch-resistant and transparent. The compositional and structural organisation of the carapace that underlies these properties is unknown. In this study, we aimed to quantify and determine the distribution of chemical elements and chitin within the carapace of adult ostracods, as well as at different stages of ostracod development, to gain insight into its composition. Elemental analyses included X-ray absorption near-edge structure, X-ray fluorescence and X-ray diffraction. Nonlinear microscopy and spectral imaging were performed to determine chitin distribution within the carapace. High levels of calcium (20.3%) and substantial levels of magnesium (1.89%) were identified throughout development. Amorphous calcium carbonate (ACC) was detected in carapaces of all developmental stages, with the polymorph, aragonite, identified in A-1 and adult carapaces. Novel chitin-derived second harmonic generation signals (430/5 nm) were detected. Quantification of relative chitin content within the developing and adult carapaces identified negligible differences in chitin content between developmental stages and adult carapaces, except for the lower chitin contribution in A-2 (66.8 ± 7.6%) compared to A-5 (85.5 ± 10%) (p = 0.03). Skogsbergia lerneri carapace calcium carbonate composition was distinct to other myodocopid ostracods. These calcium polymorphs and ACC are described in other biological transparent materials, and with the consistent chitin distribution throughout S. lerneri development, may imply a biological adaptation to preserve carapace physical properties. Realisation of S. lerneri carapace synthesis and structural organisation will enable exploitation to manufacture biomaterials and biomimetics with huge potential in industrial and military applications.
|
Jun 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Abstract: High charge synthetic Na-Mica-2 has been synthesized by the NaCl melt method. The Na+ cations in the interlayer space of the clay have been exchanged with Eu3+ ions by a cation exchange reaction. The correct incorporation of Eu3+ and further characterization of its coordination environment and location within the clay, as well as its optical properties, have been studied by means of x-ray diffraction, x-ray absorption (XANES and EXAFS), thermogravimetry and luminescence. Different structural scenarios for the incorporation of europium have been proposed and evaluated.
|
May 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[10327, 12760, 22244]
Open Access
Abstract: Mineral dust is the largest source of aerosol iron (Fe) to the offshore global ocean, but acidic processing of coal fly ash (CFA) in the atmosphere could be an important source of soluble aerosol Fe. Here, we determined the Fe speciation and dissolution kinetics of CFA from Aberthaw (United Kingdom), Krakow (Poland), and Shandong (China) in solutions which simulate atmospheric acidic processing. In CFA PM10 fractions, 8 %–21.5 % of the total Fe was found to be hematite and goethite (dithionite-extracted Fe), and 2 %–6.5 % was found to be amorphous Fe (ascorbate-extracted Fe), while magnetite (oxalate-extracted Fe) varied from 3 %–22 %. The remaining 50 %–87 % of Fe was associated with other Fe-bearing phases, possibly aluminosilicates. High concentrations of ammonium sulfate ((NH4)2SO4), often found in wet aerosols, increased Fe solubility of CFA up to 7 times at low pH (2–3). The oxalate effect on the Fe dissolution rates at pH 2 varied considerably, depending on the samples, from no impact for Shandong ash to doubled dissolution for Krakow ash. However, this enhancement was suppressed in the presence of high concentrations of (NH4)2SO4. Dissolution of highly reactive (amorphous) Fe was insufficient to explain the high Fe solubility at low pH in CFA, and the modelled dissolution kinetics suggest that other Fe-bearing phases such as magnetite may also dissolve relatively rapidly under acidic conditions. Overall, Fe in CFA dissolved up to 7 times faster than in a Saharan dust precursor sample at pH 2. Based on these laboratory data, we developed a new scheme for the proton- and oxalate-promoted Fe dissolution of CFA, which was implemented into the global atmospheric chemical transport model IMPACT (Integrated Massively Parallel Atmospheric Chemical Transport). The revised model showed a better agreement with observations of Fe solubility in aerosol particles over the Bay of Bengal, due to the initial rapid release of Fe and the suppression of the oxalate-promoted dissolution at low pH. The improved model enabled us to predict sensitivity to a more dynamic range of pH changes, particularly between anthropogenic combustion and biomass burning aerosols.
|
May 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[21441]
Open Access
Abstract: Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including 79Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescales of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.
|
Apr 2022
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
|
Zhangxiang
Hao
,
Jie
Chen
,
Xuekun
Lu
,
Liqun
Kang
,
Chun
Tan
,
Ruoyu
Xu
,
Lixia
Yuan
,
Dan J.l.
Brett
,
Paul R.
Shearing
,
Feng Ryan
Wang
,
Yunhui
Huang
Diamond Proposal Number(s):
[19072, 19246]
Open Access
Abstract: Despite progress of functionalized separator in preventing the shuttle effect and promoting the sulfur utilization, the precise and non-destructive investigation of structure-function-performance associativity remains limited so far in Li-S batteries. Here, we build consecutive multiscale analysis via combining X-ray absorption fine structure (XAFS) and X-ray computational tomography (CT) techniques to precisely visit the structure-function-performance relationship. XAFS measurement offers the atomic scale changes in the chemical structure and environment. Moreover, a non-destructive technique of X-ray CT proves the functionalized separator role for microscopic scale, which is powerful chaining to bridge the chemical structures of the materials with the overall performance modulation of cells. Benefiting from this consecutive multiscale analysis, we report that the uniform doping of Sr2+ into the perovskite LaMnO3-δ material changes the Mn oxidation states and conductivity (chemical structure), leading to effective lithium polysulfide trapping and accelerated sulfur redox (separator function), and resulting in outstanding cell performance.
|
Apr 2022
|
|
B18-Core EXAFS
|
Manjil
Das
,
Sayantika
Bhowal
,
Jhuma
Sannigrahi
,
Abhisek
Bandyopadhyay
,
Anupam
Banerjee
,
Giannantonio
Cibin
,
Dmitry
Khalyavin
,
Niladri
Banerjee
,
Devashibhai
Adroja
,
Indra
Dasgupta
,
Subham
Majumdar
Diamond Proposal Number(s):
[17752]
Abstract: We address the concomitant metal-insulator transition (MIT) and antiferromagnetic ordering in the novel pyrochlore iridate
Eu
2
Ir
2
O
7
by combining x-ray absorption spectroscopy, x-ray and neutron diffractions, and density functional theory (DFT)-based calculations. The temperature dependent powder x-ray diffraction clearly rules out any change in the lattice symmetry below the MIT, nevertheless a clear anomaly in the Ir-O-Ir bond angle and Ir-O bond length is evident at the onset of MIT. From the x-ray absorption near edge structure (XANES) spectroscopic study of Ir-
L
3
and
L
2
edges, the effective spin-orbit coupling is found to be intermediate, at least quite far from the strong atomic spin-orbit coupling limit. Powder neutron diffraction measurement is in line with an all-in-all-out magnetic structure of the Ir-tetrahedra in this compound, which is quite common among rare-earth pyrochlore iridates. The sharp change in the Ir-O-Ir bond angle around the MIT possibly arises from the exchange striction mechanism, which favors an enhanced electron correlation via weakening of Ir-Ir orbital overlap and an insulating phase below
T
M
I
. The theoretical calculations indicate an insulating state for shorter bond angle validating the experimental observation. Our DFT calculations show a possibility of intriguing topological phase below a critical value of the Ir-O distance, which is shorter than the experimentally observed bond length. Therefore, a topological state may be realized in bulk
Eu
2
Ir
2
O
7
sample if the Ir-O bond length can be reduced by the application of sufficient external pressure.
|
Apr 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[14239]
Abstract: Terbium-doped YVO4 has been considered a nonluminescent solid since the first classic studies on rare-earth-doped phosphors in the 1960s. However, we demonstrate that defect engineering of YVO4:Tb3+ nanoparticles overcomes the metal–metal charge transfer (MMCT) process which is responsible for the quenching of the Tb3+ luminescence. Tetragonal (Y1–xTbx)VO4 nanoparticles obtained by colloidal precipitation showed expanded unit cells, high defect densities, and intimately mixed carbonates and hydroxides, which contribute to a shift of the MMCT states to higher energies. Consequently, we demonstrate unambiguously for the first time that Tb3+ luminescence can be excited by VO43– → Tb3+ energy transfer and by direct population of the 5D4 state in YVO4. We also discuss how thermal treatment removes these effects and shifts the quenching MMCT state to lower energies, thus highlighting the major consequences of defect density and microstructure in nanosized phosphors. Therefore, our findings ultimately show nanostructured YVO4:Tb3+ can be reclassified as a UV-excitable luminescent material.
|
Apr 2022
|
|
B18-Core EXAFS
E01-JEM ARM 200CF
E02-JEM ARM 300CF
|
Runjia
Lin
,
Liqun
Kang
,
Tianqi
Zhao
,
Jianrui
Feng
,
Veronica
Celorrio
,
Guohui
Zhang
,
Giannantonio
Cibin
,
Anthony
Kucernak
,
Dan
Brett
,
Furio
Cora
,
Ivan P.
Parkin
,
Guanjie
He
Diamond Proposal Number(s):
[25410, 29207]
Open Access
Abstract: Electrocatalytic organic compound oxidation reactions (OCORs) have been intensively studied for energy and environmentally benign applications. However, relatively little effort has been devoted to developing a fundamental understanding of OCOR, including the detailed competition with side reactions and activity limitations, thus inhibiting the rational design of high-performance electrocatalysts. Herein, by taking NiWO4-catalysed urea oxidation reaction (UOR) in aqueous media as an example, the competition between the OCOR and the oxygen evolution reaction (OER) within a wide potential range is examined. It is shown that the root of the competition can be ascribed to insufficient surface concentration of dynamic Ni3+, an active site shared by both UOR and OER. Similar phenomenon are observed in other OCOR electrocatalysts and systems. To address the issue, a “controllable reconstruction of pseudo-crystalline bimetal oxides” design strategy is proposed to maximise the dynamic Ni3+ population and manipulate the competition between UOR and OER. The optimised electrocatalyst delivers best-in-class performance and a ~10-fold increase in current density at 1.6 V versus the reversible hydrogen electrode for alkaline urea electrolysis compared to that of the pristine materials.
|
Mar 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[21441, 18594]
Abstract: Molybdenum (Mo) is a key trace element and a contaminant in many environments including mine tailings and acid mine drainage systems. Under oxic conditions Mo exists in a number of forms, including mono-molybdate (Mo(VI)O42-) and various poly-molybdate species (e.g. Mo(VI)7O246-) depending on the geochemical conditions (e.g. pH). The mobility and bioavailability of Mo is often controlled by sorption to mineral surfaces, including iron (oxyhydr)oxides e.g. hematite (Fe2O3). This study uses adsorption isotherms, PHREEQC geochemical modelling, Attenuated Total Reflection-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and X-ray Absorption Spectroscopy (XAS) to holistically characterise the molecular scale adsorption of molybdate to hematite as a function of pH (3-12) and Mo(VI) concentration (0.01 ×10-4 - 2 ×10-3 M). PHREEQC and ATR-FTIR indicated both pH and Mo concentration are important variables when forming mono- vs. poly- molybdate and suggest low pH (≤ 4) and high Mo(VI) concentration (≥ 5 ×10-4 M) contribute to the formation of poly-molybdate (heptamolybdate Mo7O246-). XAS found Mo adsorbed to hematite via an inner-sphere corner-sharing bidentate binuclear complex with an octahedral mono-molybdate structure at a Mo concentration of 0.6 ×10-4 M across the pH range, and at a Mo(VI) concentration of 5 ×10-4 M and pH over 5. This is the first direct observation of octahedrally coordinated Mo(VI) adsorption species on hematite, and this information has broad implications for the mobility and transport of Mo as a contaminant in the environment.
|
Feb 2022
|
|