I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[17053]
Abstract: Background: The bioavailable supply of copper to ruminants has long been problematic. Complexities in supply exist due to interactions with other dietary elements in the rumen, most notably with iron or molybdenum in combination with sulphur, which can result in copper binding preventing its absorption. The molybdenum-sulphur-copper interaction has been extensively studied over the years. However, very little is known about the iron-sulphur-copper interaction, especially its mode of action in the gastrointestinal tract. Methods In the present work digesta from the rumen and jejunum of sheep fed a high copper, sulphur and iron diet was analysed using X-ray absorption spectroscopy (XAS). Results: X-ray absorption fine structure (XAFS) and X-ray absorption near edge structure (XANES) indicated that all of the copper and iron had changed in bonding in the rumen and that the oxidation state of the elements had been reduced into a mix of Fe2+ & Fe3+ and Cu+ with some Cu0. Conclusion: The copper compounds were most likely to be thiol co-ordinated in line with Cu+ chemistry. Changes to the copper compounds took place in the jejunum, although thiols were still highly favoured the possible existence of a copper-iron-sulphur complex which also included oxygen and chloride was also observed. This possibly has some resemblance to the crystal structure of bornite.
|
Jul 2022
|
|
B18-Core EXAFS
|
Hongman
Sun
,
Yu
Zhang
,
Chunfen
Wang
,
Mark A.
Isaacs
,
Ahmed I.
Osman
,
Yehong
Wang
,
David
Rooney
,
Youhe
Wang
,
Zifeng
Yan
,
Christopher M. A.
Parlett
,
Feng
Wang
,
Chunfei
Wu
Diamond Proposal Number(s):
[19850]
Abstract: Integrated carbon capture and utilization (ICCU) presents an ideal solution to address anthropogenic carbon dioxide (CO2) emissions from industry and energy sectors, facilitating CO2 capture and subsequent utilization through conversion into high-value chemicals, as opposed to current release into the atmosphere. Herein, we report the synergistic coupling of porous CaO, as a sorbent for CO2 capture, and Ni doped CeO2 nanorods, as catalytic sites for CO2 reduction. It is found that ceria is shown to possess the capacity for CO2 utilization, however, critically it only results in the generation of CO due to the weak CO-ceria bonding. The addition of Ni active sites gives rise to CH4 being the predominant product, via the strong interaction between Ni species and CO, which facilitates further reduction. Through tuning Ni loadings, we have evaluated the role of catalytic active site size, with a Ni loading of only 0.5 wt% providing optimal performance through the formation of sub-nanometer sized clusters. This near-atomic active site dispersion gives rise to CH4 productivity and selectivity of 1540 mmol g−1 Ni and 85.8%, respectively, with this optimal combination of catalyst and sorbent demonstrating high stability over 10 cycles of ICCU process. These observations in parallel with the synergistic coupling of earth-abundant, low-cost materials (CaO and Ni) will have broad implications on the design and implementation of high efficiency, cost-effective ICCU materials and processes.
|
Jun 2022
|
|
B07-B-Versatile Soft X-ray beamline: High Throughput
|
Diamond Proposal Number(s):
[29334]
Open Access
Abstract: It is important to be able to identify the precise position of H-atoms in hydrogen bonding interactions to fully understand the effects on the structure and properties of organic crystals. Using a combination of near-edge X-ray absorption fine structure (NEXAFS) spectroscopy and density functional theory (DFT) quantum chemistry calculations, we demonstrate the sensitivity of core-level X-ray spectroscopy to the precise H-atom position within a donor-proton-acceptor system. Exploiting this sensitivity, we then combine the predictive power of DFT with the experimental NEXAFS, confirming the H-atom position identified using single-crystal X-ray diffraction (XRD) techniques more easily than using other H-atom sensitive techniques, such as neutron diffraction. This proof of principle experiment confirms the H-atom positions in structures obtained from XRD, providing evidence for the potential use of NEXAFS as a more accurate and easier method of locating H-atoms within organic crystals.
|
May 2022
|
|
I11-High Resolution Powder Diffraction
I15-Extreme Conditions
|
Diamond Proposal Number(s):
[14061, 17673, 16390]
Open Access
Abstract: The similar electronic structures of Bi3+ and Pb2+ have motivated researchers to explore bismuth-based perovskite compounds, which in the past decade has been further fuelled by the demand for developing lead-free piezoceramics. The difficulty in stabilizing the perovskite phase in bismuth based compounds has directed most research activities towards exploring two main compounds - multiferroic BiFeO3 and relaxor ferroelectric Na1/2Bi1/2TiO3 and their derivatives. In recent years, quenching these materials from the sintering temperature or from the paraelectric phase (above the Curie temperature, Tc) has resulted in a plethora of fundamentally interesting and technologically relevant advances, including enhanced thermal depolarization temperature, high Tc, giant strain and control over the atomic structure and electrical conductivity at the domain wall. In this contribution, a brief overview of quenching piezoceramics is presented, with majority of the discussion encompassing salient features of quenching lead-free perovskite structured Na1/2Bi1/2TiO3- and BiFeO3- based materials. For each material system, the influence of quenching on phase transitions, domain switching behavior and electromechanical properties are presented, apart from outlining the current understanding of the underlying mechanisms. The review provides guidelines for further exploration of the quenching strategy for improving the functionality of Bi-based piezoceramics.
|
May 2022
|
|
I18-Microfocus Spectroscopy
|
Diamond Proposal Number(s):
[10327, 12760, 22244]
Open Access
Abstract: Mineral dust is the largest source of aerosol iron (Fe) to the offshore global ocean, but acidic processing of coal fly ash (CFA) in the atmosphere could be an important source of soluble aerosol Fe. Here, we determined the Fe speciation and dissolution kinetics of CFA from Aberthaw (United Kingdom), Krakow (Poland), and Shandong (China) in solutions which simulate atmospheric acidic processing. In CFA PM10 fractions, 8 %–21.5 % of the total Fe was found to be hematite and goethite (dithionite-extracted Fe), and 2 %–6.5 % was found to be amorphous Fe (ascorbate-extracted Fe), while magnetite (oxalate-extracted Fe) varied from 3 %–22 %. The remaining 50 %–87 % of Fe was associated with other Fe-bearing phases, possibly aluminosilicates. High concentrations of ammonium sulfate ((NH4)2SO4), often found in wet aerosols, increased Fe solubility of CFA up to 7 times at low pH (2–3). The oxalate effect on the Fe dissolution rates at pH 2 varied considerably, depending on the samples, from no impact for Shandong ash to doubled dissolution for Krakow ash. However, this enhancement was suppressed in the presence of high concentrations of (NH4)2SO4. Dissolution of highly reactive (amorphous) Fe was insufficient to explain the high Fe solubility at low pH in CFA, and the modelled dissolution kinetics suggest that other Fe-bearing phases such as magnetite may also dissolve relatively rapidly under acidic conditions. Overall, Fe in CFA dissolved up to 7 times faster than in a Saharan dust precursor sample at pH 2. Based on these laboratory data, we developed a new scheme for the proton- and oxalate-promoted Fe dissolution of CFA, which was implemented into the global atmospheric chemical transport model IMPACT (Integrated Massively Parallel Atmospheric Chemical Transport). The revised model showed a better agreement with observations of Fe solubility in aerosol particles over the Bay of Bengal, due to the initial rapid release of Fe and the suppression of the oxalate-promoted dissolution at low pH. The improved model enabled us to predict sensitivity to a more dynamic range of pH changes, particularly between anthropogenic combustion and biomass burning aerosols.
|
May 2022
|
|
B18-Core EXAFS
B22-Multimode InfraRed imaging And Microspectroscopy
|
Yujie
Ma
,
Wanpeng
Lu
,
Xue
Han
,
Yinlin
Chen
,
Ivan
Da Silva
,
Daniel
Lee
,
Alena M.
Sheveleva
,
Zi
Wang
,
Jiangnan
Li
,
Weiyao
Li
,
Mengtian
Fan
,
Shaojun
Xu
,
Floriana
Tuna
,
Eric J. L.
Mcinnes
,
Yongqiang
Cheng
,
Svemir
Rudic
,
Pascal
Manuel
,
Mark D.
Frogley
,
Anibal J.
Ramirez-Cuesta
,
Martin
Schroeder
,
Sihai
Yang
Diamond Proposal Number(s):
[19850]
Open Access
Abstract: The presence of active sites in metal–organic framework (MOF) materials can control and affect their performance significantly in adsorption and catalysis. However, revealing the interactions between the substrate and active sites in MOFs at atomic precision remains a challenging task. Here, we report the direct observation of binding of NH3 in a series of UiO-66 materials containing atomically dispersed defects and open Cu(I) and Cu(II) sites. While all MOFs in this series exhibit similar surface areas (1111–1135 m2 g–1), decoration of the −OH site in UiO-66-defect with Cu(II) results in a 43% enhancement of the isothermal uptake of NH3 at 273 K and 1.0 bar from 11.8 in UiO-66-defect to 16.9 mmol g–1 in UiO-66-CuII. A 100% enhancement of dynamic adsorption of NH3 at a concentration level of 630 ppm from 2.07 mmol g–1 in UiO-66-defect to 4.15 mmol g–1 in UiO-66-CuII at 298 K is observed. In situ neutron powder diffraction, inelastic neutron scattering, and electron paramagnetic resonance, solid-state nuclear magnetic resonance, and infrared spectroscopies, coupled with modeling reveal that the enhanced NH3 uptake in UiO-66-CuII originates from a {Cu(II)···NH3} interaction, with a reversible change in geometry at Cu(II) from near-linear to trigonal coordination. This work represents the first example of structural elucidation of NH3 binding in MOFs containing open metal sites and will inform the design of new efficient MOF sorbents by targeted control of active sites for NH3 capture and storage.
|
May 2022
|
|
I20-Scanning-X-ray spectroscopy (XAS/XES)
|
Diamond Proposal Number(s):
[21441]
Open Access
Abstract: Selenium (Se) is a toxic contaminant with multiple anthropogenic sources, including 79Se from nuclear fission. Se mobility in the geosphere is generally governed by its oxidation state, therefore understanding Se speciation under variable redox conditions is important for the safe management of Se contaminated sites. Here, we investigate Se behavior in sediment groundwater column systems. Experiments were conducted with environmentally relevant Se concentrations, using a range of groundwater compositions, and the impact of electron-donor (i.e., biostimulation) and groundwater sulfate addition was examined over a period of 170 days. X-Ray Absorption Spectroscopy and standard geochemical techniques were used to track changes in sediment associated Se concentration and speciation. Electron-donor amended systems with and without added sulfate retained up to 90% of added Se(VI)(aq), with sediment associated Se speciation dominated by trigonal Se(0) and possibly trace Se(-II); no Se colloid formation was observed. The remobilization potential of the sediment associated Se species was then tested in reoxidation and seawater intrusion perturbation experiments. In all treatments, sediment associated Se (i.e., trigonal Se(0)) was largely resistant to remobilization over the timescales of the experiments (170 days). However, in the perturbation experiments, less Se was remobilized from sulfidic sediments, suggesting that previous sulfate-reducing conditions may buffer Se against remobilization and migration.
|
Apr 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[22410]
Abstract: Metal–organic frameworks (MOFs) can serve as precursors for new nanomaterials via thermal decomposition. Such MOF-derived nanomaterials (MDNs) are often comprised of metal and/or metal oxide particles embedded on porous carbon. The morphology of MDNs is similar to that of the precursor MOF, and improved stability and catalytic properties have been demonstrated. However, the pathway from MOF to MDN is only well understood for a few systems, and in situ studies are needed to elucidate the full phase behaviour and time/temperature dependency. In this work, we follow the MOF-to-MDN transformation in situ by using three complementary techniques: X-ray absorption spectroscopy (XAS), powder X-ray diffraction (PXRD), and X-ray total scattering/pair distribution function (TS/PDF) analysis. The thermal decomposition of HKUST-1, i.e. the archetypical MOF Cu3(btc = 1,3,5-benzenetricarboxylate)2, is followed from room temperature to 500 °C by applying different heating ramps. Real space correlations are followed by PDF and extended X-ray absorption fine structure (EXAFS) analysis, and quantitative phase fractions are obtained by refinement of PXRD and PDF data, and by linear combination analysis (LCA) of X-ray absorption near edge Structure (XANES) data. We find that HKUST-1 decomposes at 300–325 °C into copper(I) oxide and metallic copper. Above 350–470 °C, metal particles remain as the only copper species. There is an overall good agreement between all three techniques with respect to the phase evolution, and the study paves the road towards rational synthesis of a Cu2O/Cu/carbon material with the desired metal/metal oxide composition. More importantly, our investigations serve as a benchmark study demonstrating that this methodology is generally applicable for studying the thermal decomposition of MOFs.
|
Apr 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[16250]
Open Access
Abstract: The Sabatier reaction is a key element of power-to-gas development. For this reason, even though the process is known since more than one century, the Sabatier reaction is currently the object of important research efforts towards the development of new catalysts for performance improvement. However, the industrial exploitation of the Sabatier reaction depends on the development of reactors that match the best catalyst with an appropriate heat management. For this reason, this paper develops a methodology for the contemporary optimization of the reactor concept and the catalysts. It is observed that the reactor can be divided into three sections with contrasting requirements. In the first section, the main requirement concerns the reach of the reaction activation conditions. Hence, an adequate match between catalyst and reactor is needed, for example with an appropriate pre-heater. Once the reaction is activated, a reaction hotspot is formed, so that the cooling becomes determining and the main requirement for the catalyst is the resistance to poisoning and sintering. In the last section of the reactor, the low temperature activity of the catalyst is determining, so that a high-performing catalyst is needed. This paper indicates a strategy for the rational design of this catalyst, based on mechanistic evidences.
|
Apr 2022
|
|
B18-Core EXAFS
|
Diamond Proposal Number(s):
[12400]
Abstract: Changes in magnetism were investigated through control over the atomic structure for Cu1−xAgx alloy matrix-embedded Fe nanoparticles systems. Nanocomposite magnetic films were prepared using the low-energy cluster beam deposition (LECBD) technique under ultra-high vacuum (UHV) conditions. Fe nanoparticles were produced by gas aggregation source, while alloy matrices were produced by MBE sources. Extended x-ray absorption fine structure (EXAFS) experiments revealed that the Fe nanoparticles in pure Cu have fcc structure while retaining their bulk bcc structure in Cu1−xAgx alloy matrix. Also, a slight decrease in Fe–Fe interatomic distances was observed in the bcc Fe structure due to the compression in the alloy matrix. The magnetic moment of Fe was initially very low because of its fcc structure in the pure Cu matrix, however, increased ultimately to values of ~ 2.7 μB/atom with increasing Ag content in the alloy matrix.
|
Apr 2022
|
|