I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[2796]
Open Access
Abstract: Polymerization-induced self-assembly (PISA) is widely recognized to be a powerful technique for the preparation of diblock copolymer nano-objects in various solvents. Herein a highly unusual non-aqueous emulsion polymerization formulation is reported. More specifically, the reversible addition–fragmentation chain transfer (RAFT) polymerization of N-(2-acryloyloxy)ethyl pyrrolidone (NAEP) is conducted in n-dodecane using a poly(stearyl methacrylate) (PSMA) precursor to produce sterically-stabilized spherical nanoparticles at 90 °C. This relatively high polymerization temperature was required to ensure sufficient background solubility for the highly polar NAEP monomer, which is immiscible with the non-polar continuous phase. A relatively long PSMA precursor (mean degree of polymerization, DP = 36) was required to ensure colloidal stability, which meant that only kinetically-trapped spheres could be obtained. Dynamic light scattering (DLS) studies indicated that the resulting PSMA36–PNAEPx (x = 60 to 500) spheres were relatively well-defined (DLS polydispersity <0.10) and the z-average diameter increased linearly with PNAEP DP up to 261 nm. Differential scanning calorimetry studies confirmed a relatively low glass transition temperature (Tg) for the core-forming PNAEP block, which hindered accurate sizing of the nanoparticles by TEM. However, introducing ethylene glycol diacrylate (EGDA) as a third block to covalently crosslink the nanoparticle cores enabled a spherical morphology to be identified by transmission electron microscopy studies. This assignment was confirmed by small angle X-ray scattering studies of the linear diblock copolymer nanoparticles. Finally, hydrophobic linear PSMA36–PNAEP70 spheres were evaluated as a putative Pickering emulsifier for n-dodecane–water mixtures. Unexpectedly, addition of an equal volume of water followed by high-shear homogenization always produced oil-in-water (o/w) emulsions, rather than water-in-oil (w/o) emulsions. Moreover, core-crosslinked PSMA36–PNAEP60–PEGDA10 spheres also produced o/w Pickering emulsions, suggesting that such Pickering emulsions must be formed by nanoparticle adsorption at the inner surface of the oil droplets. DLS studies of the continuous phase obtained after either creaming (o/w emulsion) or sedimentation (w/o emulsion) of the droplet phase were consistent with this interpretation. Furthermore, certain experimental conditions (e.g. ≥0.5% w/w copolymer concentration for linear PSMA36–PNAEPx nanoparticles, ≥0.1% w/w for core-crosslinked nanoparticles, or n-dodecane volume fractions ≤0.60) produced w/o/w double emulsions in a single step, as confirmed by fluorescence microscopy studies.
|
Jun 2021
|
|
I22-Small angle scattering & Diffraction
|
Rachel L.
Atkinson
,
Olivia R.
Monaghan
,
Matthew T.
Elsmore
,
Paul D.
Topham
,
Daniel T. W.
Toolan
,
Matthew J.
Derry
,
Vincenzo
Taresco
,
Robert A.
Stockman
,
Davide S. A.
De Focatiis
,
Derek J.
Irvine
,
Steven M.
Howdle
Diamond Proposal Number(s):
[23501]
Open Access
Abstract: Terpenes are ideal candidates for sustainable polymer feedstocks, due to their natural abundance and availability from existing waste streams. Previously, we have shown that a range of terpene(meth)acrylate monomers can be synthesised from the most commonly available terpenes (α-pinene, β-pinenene and limonene) and that these readily undergo radical polymerisation. We now report the synthesis of well-defined polymers and precise di- and multiblock copolymer architectures by use of RAFT control. A very wide range of Tg values are observed for the terpene (meth)acrylate homopolymers, from −3 °C for poly(limonene acrylate), up to +168 °C for poly(α-pinene methacrylate), and we exploit these to create renewably-sourced hard–soft block copolymers. We also report the synthesis of difunctional poly(α- and β-pinene methacrylate) macro-RAFT agents and the preparation of ABA triblock copolymers. Promising adhesive properties are observed for a triblock copolymer comprised of poly(α-pinene methacrylate) and poly(butyl acrylate) blocks. A range of fully terpene-based triblock copolymers containing poly(limonene acrylate) soft blocks are also reported.
|
May 2021
|
|
I22-Small angle scattering & Diffraction
|
Ryan R.
Larder
,
Thomas
Bennett
,
L. Scott
Blankenship
,
Jesum A.
Fernandes
,
Bethany K.
Husband
,
Rachel L.
Atkinson
,
Matthew J.
Derry
,
Daniel T. W.
Toolan
,
Higor A.
Centurion
,
Paul D.
Topham
,
Renato V.
Goncalves
,
Vincenzo
Taresco
,
Steven M.
Howdle
Diamond Proposal Number(s):
[23501]
Open Access
Abstract: Reversible addition–fragmentation chain transfer (RAFT) mediated dispersion polymerisation in supercritical carbon dioxide (scCO2) is an efficient and green method for synthesising block copolymer microparticles with internal nanostructures. Here we report for the first time the synthesis of phase separated poly(methyl methacrylate-block-styrene-block-4-vinylpyridine) (PMMA-b-PS-b-P4VP) triblock terpolymer microparticles using a simple two-pot sequential synthesis procedure in scCO2, with high monomer conversions and no purification steps. The microparticles, produced directly and without further processing, show a complex internal nanostructure, appearing as a “lamellar with spheres” [L + S(II)] type morphology. The P4VP block is then exploited as a structure-directing agent for the fabrication of TiO2 microparticles. Through a simple and scalable sol–gel and calcination process we produce hollow TiO2 microparticles with a mesoporous outer shell. When directly compared to porous TiO2 particles fabricated using an equivalent PMMA-b-P4VP diblock copolymer, increased surface area and enhanced photocatalytic efficiencies are observed.
|
Apr 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[19852, 21776]
Open Access
Abstract: We have previously reported the synthesis of thermoresponsive poly(stearyl methacrylate)-poly(benzyl methacrylate) [PSMA-PBzMA] diblock copolymer vesicles in mineral oil via polymerisation-induced self-assembly (PISA). Such vesicles undergo a vesicle-to-worm transition on heating, which provides an interesting new oil-thickening mechanism (see M. J. Derry, et al., Angew. Chem., 2017, 56, 1746–1750). In the present study, we report an unexpected reduction in dispersion viscosity when heating vesicles of approximately the same composition above a certain critical temperature. Transmission electron microscopy (TEM) studies indicate rich thermoresponsive behavior, with vesicles present at 20 °C, worms being formed at 130 °C and spheres generated at 180 °C, indicating that a worm-to-sphere transition occurs after the initial vesicle-to-worm transition. Moreover, we have also prepared a series of new thermoresponsive diblock copolymer vesicles by RAFT dispersion copolymerization of n-butyl methacrylate (BuMA) with benzyl methacrylate (BzMA) using a poly(stearyl methacrylate) precursor in mineral oil. This model system was developed to examine whether statistical copolymerization of a suitable comonomer (BuMA) could be used to tune the critical onset temperature required for the vesicle-to-worm transition. Indeed, oscillatory rheology studies confirmed that targeting membrane-forming blocks containing up to 50 mol% BuMA lowered the critical onset temperature required to induce the vesicle-to-worm transition to 109 °C, compared to 167 °C for the reference PSMA14-PBzMA125 diblock copolymer. Variable temperature small-angle X-ray scattering (SAXS) experiments confirmed a vesicle-to-worm transition, with the vesicles initially present at 20 °C being converted into worms when heated above 130 °C. Furthermore, a substantial reduction in dispersion viscosity was again observed when heating above the critical onset temperature. TEM and shear-induced polarized light imaging (SIPLI) studies indicate that linear worms are no longer present at 160 °C and 170 °C respectively, suggesting a subsequent worm-to-sphere transition. The thermal transitions studied herein proved to be irreversible on cooling on normal experimental timescales (hours).
|
Feb 2021
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[15933]
Open Access
Abstract: The rational synthesis of epoxy-functional diblock copolymer nano-objects has been achieved via RAFT aqueous emulsion polymerisation of glycidyl methacrylate (GlyMA; aqueous solubility ∼22 g dm−3 at 50 °C) by utilising relatively mild conditions (pH 7, 50 °C) to preserve the epoxy groups. High monomer conversions were achieved within 1 h when using a poly(glycerol monomethacrylate) chain transfer agent with a mean degree of polymerisation (DP) of 28, with GPC analysis indicating relatively narrow molecular weight distributions (Mw/Mn < 1.40) when targeting PGlyMA DPs up to 80. A phase diagram was constructed to identify the synthesis conditions required to access pure spheres, worms or vesicles. Transmission electron microscopy, dynamic light scattering and small-angle X-ray scattering (SAXS) studies indicated the formation of well-defined worms and vesicles when targeting relatively long PGlyMA blocks. These epoxy-functional nano-objects were derivatised via epoxy-thiol chemistry by reaction with L-cysteine in aqueous solution. Finally, an in situ SAXS study was conducted during the RAFT aqueous emulsion polymerisation of GlyMA at 50 °C to examine the nucleation and size evolution of PGMA48-PGlyMA100 diblock copolymer spheres using a bespoke stirrable reaction cell.
|
Sep 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[14892]
Abstract: Poly(stearyl methacrylate)-poly(2-hydroxypropyl methacrylate) (PSMA-PHPMA) diblock copolymer nanoparticles are synthesized via reversible addition–fragmentation chain transfer (RAFT) dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) in mineral oil at 90 °C. The relatively short PSMA precursor (mean degree of polymerization = 9) remains soluble in mineral oil, whereas the growing PHPMA block quickly becomes insoluble, resulting in polymerization-induced self-assembly (PISA). Relatively high HPMA monomer conversions (≥98%) were achieved within 70 min as confirmed by in situ 1H NMR spectroscopy studies, while gel permeation chromatography (GPC) analyses indicated high blocking efficiencies and relatively narrow molecular weight distributions (Mw/Mn ≤ 1.37) for all PISA syntheses. Depending on the precise synthesis conditions, this PISA formulation can produce diblock copolymer spheres, worms or vesicles; a pseudo-phase diagram has been constructed to enable reproducible targeting of each pure phase. Thus this is a rare example of the use of a commercially available polar monomer for PISA syntheses in non-polar media that offers access to the full range of copolymer morphologies. The resulting nanoparticles were characterized using dynamic light scattering (DLS), transmission electron microscopy (TEM), oscillatory rheology and small-angle X-ray scattering (SAXS). Interestingly, PSMA9-PHPMA70 worms undergo an unusual (partial) worm-to-vesicle transition at elevated temperature. Finally, PSMA9-PHPMA50 spheres were evaluated as putative Pickering emulsifiers. Using lower water volume fractions produced water-in-oil (w/o) emulsions after high shear homogenization, as expected. However, using higher water volume fractions, shear rates or copolymer concentrations favored the formation of w/o/w Pickering double emulsions.
|
Jun 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[17255]
Abstract: A series of poly(stearyl methacrylate)–poly(benzyl methacrylate) (PSMA–PBzMA) diblock copolymer nano-objects has been synthesized via reversible addition–fragmentation chain-transfer (RAFT) dispersion polymerization in n-dodecane at 20 wt%. This polymerization-induced self-assembly (PISA) formulation was modified by the incorporation of an anionic monomer, tetradodecylammonium 3-sulfopropyl methacrylate ([NDod4]+[SPMA]−) into the oil-insoluble PBzMA block. According to the literature (M. J. Derry, et al., Chem. Sci., 2016, 7, 5078–5090), PSMA18–PBzMA diblock copolymers only form spheres using this formulation for any core degree of polymerization. Unexpectedly, incorporating just a small fraction (<6 mol%) of [NDod4]+[SPMA]− comonomer into the structure-directing block resulted in the formation of non-spherical diblock copolymer nano-objects, including pure worm-like and vesicular morphologies. However, only spherical micelles could be formed using a longer PSMA34 stabilizer. These diblock copolymer nano-objects were characterized by transmission electron microscopy, small-angle X-ray scattering, and dynamic light scattering. The bulky nature of the ionic comonomer appears to make it possible to avoid the kinetically-trapped sphere morphology. This study reveals a new approach for tuning the morphology of diblock copolymer nano-objects in non-polar media.
|
Apr 2020
|
|
B21-High Throughput SAXS
|
Abstract: Polymerisation-induced self-assembly (PISA) has become widely recognised as a versatile and efficient strategy to prepare well-defined diblock copolymer nanoparticles in a range of solvents. In this article, we report the synthesis of anionic, sterically-stabilised, sulfonate-functional diblock copolymer nanoparticles via PISA using a reversible addition–fragmentation chain-transfer (RAFT) polymerisation formulation. Anionic poly(potassium 3-sulfopropyl methacrylate) (PKSPMA) macromolecular chain-transfer agents (macro-CTAs) were synthesised via RAFT solution polymerisation followed by chain-extension with benzyl methacrylate (BzMA) in alcohol/water mixtures to form PKSPMA–PBzMA nanoparticles. The influence of solvent quality on the formation of these nanoparticles was investigated by judiciously changing the alcohol/water ratio, the alcohol co-solvent (ethanol or methanol) and relative copolymer composition. The resulting diblock copolymer nanoparticles were analysed by dynamic light scattering (DLS), transmission electron microscopy (TEM), small-angle X-ray scattering (SAXS), and aqueous electrophoresis. The results demonstrated that nanoparticles with controllable diameters for a fixed copolymer composition can be prepared by altering the co-solvent composition. More specifically, when using different ratios of ethanol/water or methanol/water, the nanoparticle diameter can be tuned from approximately 20 to 200 nm with fixed copolymer composition. This indicates that the solvency of both the stabiliser and core-forming block has a marked impact on both the aggregation of polymer chains during self-assembly and the resulting nanoparticles. Additionally, these nanoparticles remain colloidally stable and highly anionic over a wide pH range from 4 to 10, as judged by aqueous electrophoresis.
|
Feb 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[21776]
Abstract: Polymerisation-induced self-assembly (PISA) is widely recognised to be a powerful platform technology for the rational synthesis of diblock copolymer nano-objects. RAFT alcoholic dispersion polymerisation is an important PISA formulation that has been used to prepare block copolymer spheres, worms and vesicles. In this study, we have utilised the RAFT dispersion polymerisation of lauryl methacrylate (LMA) using a poly(N-(2-methacryloyloxy)ethyl pyrrolidone) (PNMEP) stabiliser in order to prepare vesicles with highly deformable membranes. More specifically, a PNMEP28 precursor was chain-extended with LMA in an 80 : 20 w/w ethanol–water mixture to produce a series of PNMEP28-PLMAx diblock copolymer nano-objects (Mw/Mn ≤ 1.40; LMA conversions ≥98% in all cases, as indicated by 1H NMR spectroscopy). Differential scanning calorimetry studies confirmed that the membrane-forming PLMA block had a relatively low glass transition temperature. Transmission electron microscopy and small angle X-ray scattering were used to identify copolymer morphologies for these highly asymmetric diblock copolymers. A mixed sphere and vesicle morphology was observed when targeting x = 43, while polydisperse vesicles were obtained for x = 65–151. Slightly smaller vesicles with lower mean aggregation numbers and thicker membranes were obtained when targeting higher PLMA DPs. A minor population of sheet-like lamellae was observed for each target copolymer composition, with lamellar stacking leading to a structure peak in the scattering patterns recorded for PNMEP28-PLMA129 and PNMEP28-PLMA151. Bearing in mind potential industrial applications, RAFT chain-end removal strategies were briefly explored for such PNMEP28-PLMAx vesicles. Thus, 96% of dithiobenzoate chain-ends could be removed within 3 h at 50 °C via LED irradiation of a 7.5% aqueous dispersion of PNMEP28-PLMA87 vesicles at a wavelength of 405 nm. This appears to be an attractive method for RAFT chain-end removal from diblock copolymer nano-objects, particularly those comprising highly hydrophobic cores.
|
Jan 2020
|
|
I22-Small angle scattering & Diffraction
|
Diamond Proposal Number(s):
[9490, 10237]
Abstract: Binary mixtures of anionic and non-ionic macromolecular chain transfer agents (macro-CTAs) are utilized in order to rationally design diblock copolymer nanoparticles with tunable morphologies and anionic character via pseudo-living radical polymerization. More specifically, poly(methacrylic acid) (PMAA) and poly(glycerol monomethacrylate) (PGMA) macro-CTAs are pre-mixed prior to reversible addition–fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA). This strategy facilitates the formation of PHPMA-based diblock copolymer spheres, worm-like micelles and vesicles via polymerization-induced self-assembly (PISA). The presence of the anionic PMAA stabilizer block has a dramatic impact on the resulting copolymer morphology, particularly if the degree of polymerization (DP) of the PMAA stabilizer chains is longer than that of the PGMA. Two phase diagrams have been constructed to investigate the effect of the relative proportion and molar mass of the two macro-CTAs. Such a systematic approach is essential for the reproducible synthesis of pure worm-like micelles, which occupy relatively narrow phase space. The rheological behavior of a series of soft, free-standing worm gels is investigated. Finally, such gels are examined as model matrices for the growth of biomimetic calcite crystals and the role of the anionic PMAA stabilizer chains in directing crystal growth is evaluated.
|
Aug 2019
|
|