Publication

Article Metrics

Citations


Online attention

Structural and functional characterization of three novel fungal amylases with enhanced stability and pH tolerance

DOI: 10.3390/ijms20194902 DOI Help

Authors: Christian Roth (University of York; Max Planck Institute of Colloids and Interfaces) , Olga V. Moroz (University of York) , Johan P. Turkenburg (University of York) , Elena Blagova (University of York) , Jitka Waterman (University of York; Diamond Light Source) , Antonio Ariza (University of Leeds) , Li Ming (Novozymes (China) Investment Co. Ltd) , Sun Tianqi (Novozymes (China) Investment Co. Ltd) , Carsten Andersen (Novozymes (Denmark)) , Gideon J. Davies (University of York) , Keith S. Wilson (University of York)
Co-authored by industrial partner: Yes

Type: Journal Paper
Journal: International Journal Of Molecular Sciences , VOL 20

State: Published (Approved)
Published: October 2019
Diamond Proposal Number(s): 1221 , 9948

Open Access Open Access

Abstract: Amylases are probably the best studied glycoside hydrolases and have a huge biotechnological value for industrial processes on starch. Multiple amylases from fungi and microbes are currently in use. Whereas bacterial amylases are well suited for many industrial processes due to their high stability, fungal amylases are recognized as safe and are preferred in the food industry, although they lack the pH tolerance and stability of their bacterial counterparts. Here, we describe three amylases, two of which have a broad pH spectrum extending to pH 8 and higher stability well suited for a broad set of industrial applications. These enzymes have the characteristic GH13 α-amylase fold with a central (β/α)8-domain, an insertion domain with the canonical calcium binding site and a C-terminal β-sandwich domain. The active site was identified based on the binding of the inhibitor acarbose in form of a transglycosylation product, in the amylases from Thamnidium elegans and Cordyceps farinosa. The three amylases have shortened loops flanking the nonreducing end of the substrate binding cleft, creating a more open crevice. Moreover, a potential novel binding site in the C-terminal domain of the Cordyceps enzyme was identified, which might be part of a starch interaction site. In addition, Cordyceps farinosa amylase presented a successful example of using the microseed matrix screening technique to significantly speed-up crystallization.

Journal Keywords: α-amylase; starch degradation; biotechnology; structure

Subject Areas: Biology and Bio-materials


Instruments: I02-Macromolecular Crystallography

Other Facilities: ESRF

Documents:
ijms-20-04902.pdf