Publication

Article Metrics

Citations


Online attention

Depth-dependent oxygen redox activity in lithium-rich layered oxide cathodes

DOI: 10.1039/C9TA09019C DOI Help

Authors: Andrew J. Naylor (University of Oxford) , Eszter Makkos (University of Bath) , Julia Maibach (Uppsala University) , Niccolo Guerrini (University of Oxford) , Adam Sobkowiak (University of Oxford) , Erik Bjorklund (Uppsala University) , Juan G. Lozano (University of Oxford) , Ashok Sreekumar Menon (Uppsala University) , Reza Younesi (Uppsala University) , Matthew R. Roberts (University of Oxford) , Kristina Edström (Uppsala University) , M. Saiful Islam (University of Bath) , Peter G. Bruce (University of Oxford)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Journal Of Materials Chemistry A

State: Published (Approved)
Published: September 2019
Diamond Proposal Number(s): 14733 , 16629

Open Access Open Access

Abstract: Lithium-rich materials, such as Li1.2Ni0.2Mn0.6O2, exhibit capacities not limited by transition metal redox, through the reversible oxidation of oxide anions. Here we offer detailed insight into the degree of oxygen redox as a function of depth within the material as it is charged and cycled. Energy-tuned photoelectron spectroscopy is used as a powerful, yet highly sensitive technique to probe electronic states of oxygen and transition metals from the top few nanometers at the near-surface through to the bulk of the particles. Two discrete oxygen species are identified, On- and O2-, where n<2, confirming our previous model that oxidation generates localised hole states on O upon charging. This is in contrast to the oxygen redox inactive high voltage spinel LiNi0.5Mn1.5O4, for which no On- species is detected. The depth profile results demonstrate a concentration gradient exists for On- from the surface through to the bulk, indicating a preferential surface oxidation of the layered oxide particles. This is highly consistent with the already well-established core-shell model for such materials. Ab initio calculations reaffirm the electronic structure differences observed experimentally between the surface and bulk, while modelling of delithiated structures shows good agreement between experimental and calculated binding energies for On-.

Subject Areas: Materials, Chemistry, Energy


Instruments: I09-Surface and Interface Structural Analysis

Documents:
hjj5hh5.pdf