Publication

Article Metrics

Citations


Online attention

Tailoring the topological surface state in ultrathin α -Sn(111) films

DOI: 10.1103/PhysRevB.100.245144 DOI Help

Authors: V. A. Rogalev (Universität Würzburg) , F. Reis (Universität Würzburg) , F. Adler (Universität Würzburg) , M. Bauernfeind (Universität Würzburg) , J. Erhardt (Universität Würzburg) , A. Kowalewski (Universität Würzburg) , M. R. Scholz (Universität Würzburg) , L. Dudy (Universität Würzburg) , L. B. Duffy (Oxford University) , T. Hesjedal (Oxford University) , M. Hoesch (Diamond Light Source; DESY Photon Science) , G. Bihlmayer (Peter Grünberg Institut, Forschungszentrum Jülich and JARA) , J. Schäfer (Universität Würzburg) , R. Claessen (Universität Würzburg)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Physical Review B , VOL 100

State: Published (Approved)
Published: December 2019
Diamond Proposal Number(s): 10244 , 10289 , 12892 , 15285

Abstract: We report on the electronic structure of α -Sn films in the very low thickness regime grown on InSb(111)A. High-resolution low photon energy angle-resolved photoemission spectroscopy allows for the direct observation of the linearly dispersing two-dimensional (2D) topological surface state (TSS) that exists between the second valence band and the conduction band. The Dirac point of this TSS was found to be 200 meV below the Fermi level in 10-nm-thick films, which enables the observation of the hybridization gap opening at the Dirac point of the TSS for thinner films. The crossover to a quasi-2D electronic structure is accompanied by a full gap opening at the Brillouin-zone center, in agreement with our density functional theory calculations. We further identify the thickness regime of α -Sn films where the hybridization gap in the TSS coexists with the topologically nontrivial electronic structure and one can expect the presence of a one-dimensional helical edge state.

Journal Keywords: Band gap; Electronic structure; Fermi surface; Symmetry protected topological states; Topological materials; Dirac semimetal; Elemental materials; Stanene; Ultrathin films; Angle-resolved photoemission spectroscopy; First-principles calculations

Subject Areas: Materials, Physics


Instruments: I05-ARPES

Added On: 14/01/2020 14:57

Discipline Tags:

Surfaces Quantum Materials Physics Hard condensed matter - structures Materials Science interfaces and thin films

Technical Tags:

Spectroscopy Angle Resolved Photoemission Spectroscopy (ARPES)