Publication
Article Metrics
Citations
Online attention
Molecular basis for fibroblast growth factor 23 O-glycosylation by GalNAc-T3
DOI:
10.1038/s41589-019-0444-x
Authors:
Matilde
De Las Rivas
(University of Zaragoza)
,
Earnest James
Paul Daniel
(Case Western Reserve University)
,
Yoshiki
Narimatsu
(University of Copenhagen)
,
Ismael
Compañón
(Universidad de La Rioja)
,
Kentaro
Kato
(University of Copenhagen; Institute of Tropical Medicine Nagasaki University)
,
Pablo
Hermosilla
(Universidad de Zaragoza)
,
Aurélien
Thureau
(Synchrotron SOLEIL)
,
Laura
Ceballos-Laita
(University of Zaragoza)
,
Helena
Coelho
(Universidade de Nova de Lisboa; CIC bioGUNE)
,
Pau
Bernadó
(CNRS, Université de Montpellier)
,
Filipa
Marcelo
(Universidade de Nova de Lisboa)
,
Lars
Hansen
(University of Copenhagen)
,
Ryota
Maeda
(Kyoto University)
,
Anabel
Lostao
(Universidad de Zaragoza)
,
Francisco
Corzana
(Universidad de La Rioja)
,
Henrik
Clausen
(University of Copenhagen)
,
Thomas A.
Gerken
(Case Western Reserve University)
,
Ramon
Hurtado-Guerrero
(University of Zaragoza; University of Copenhagen)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Nature Chemical Biology
, VOL 44
State:
Published (Approved)
Published:
January 2020
Diamond Proposal Number(s):
14739
Abstract: Polypeptide GalNAc-transferase T3 (GalNAc-T3) regulates fibroblast growth factor 23 (FGF23) by O-glycosylating Thr178 in a furin proprotein processing motif RHT178R↓S. FGF23 regulates phosphate homeostasis and deficiency in GALNT3 or FGF23 results in hyperphosphatemia and familial tumoral calcinosis. We explored the molecular mechanism for GalNAc-T3 glycosylation of FGF23 using engineered cell models and biophysical studies including kinetics, molecular dynamics and X-ray crystallography of GalNAc-T3 complexed to glycopeptide substrates. GalNAc-T3 uses a lectin domain mediated mechanism to glycosylate Thr178 requiring previous glycosylation at Thr171. Notably, Thr178 is a poor substrate site with limiting glycosylation due to substrate clashes leading to destabilization of the catalytic domain flexible loop. We suggest GalNAc-T3 specificity for FGF23 and its ability to control circulating levels of intact FGF23 is achieved by FGF23 being a poor substrate. GalNAc-T3’s structure further reveals the molecular bases for reported disease-causing mutations. Our findings provide an insight into how GalNAc-T isoenzymes achieve isoenzyme-specific nonredundant functions.
Journal Keywords: Carbohydrates; Enzymes; Mechanism of action; X-ray crystallography
Diamond Keywords: Enzymes
Subject Areas:
Biology and Bio-materials,
Chemistry
Instruments:
I24-Microfocus Macromolecular Crystallography
Added On:
28/01/2020 14:10
Discipline Tags:
Biochemistry
Catalysis
Chemistry
Structural biology
Life Sciences & Biotech
Technical Tags:
Diffraction
Macromolecular Crystallography (MX)