Article Metrics


Online attention

Enhancing easy-plane anisotropy in bespoke Ni(II) quantum magnets

DOI: 10.1016/j.poly.2020.114379 DOI Help

Authors: Jamie L. Manson (Eastern Washington University) , Zachary E. Manson (Eastern Washington University) , Ashley Sargent (Eastern Washington University) , Danielle Y. Villa (Eastern Washington University) , Nicole L. Etten (Eastern Washington University) , William J. A. Blackmore (University of Warwick) , Samuel P. M. Curley (University of Warwick) , Robert C. Williams (University of Warwick) , Jamie Brambleby (University of Warwick) , Paul A. Goddard (University of Warwick) , Andrew Ozarowski (Florida State University) , Murray N. Wilson (Durham University) , Benjamin M. Huddart (Durham University) , Tom Lancaster (Durham University) , Roger D. Johnson (University of Oxford) , Stephen J. Blundell (University of Oxford) , Jesper Bendix (University of Copenhagen) , Kraig A. Wheeler (Whitworth University) , Saul H. Lapidus (Advanced Photon Source) , Fan Xiao (Paul Scherrer Institut; University of Bern) , Serena Birnbaum (Los Alamos National Laboratory) , John Singleton (Los Alamos National Laboratory)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Polyhedron

State: Published (Approved)
Published: January 2020
Diamond Proposal Number(s): 18786

Abstract: We examine the crystal structures and magnetic properties of several S = 1 Ni(II) coordination compounds, molecules and polymers, that include the bridging ligands HF2-, AF62- (A = Ti, Zr) and pyrazine or non-bridging ligands F-, SiF62-, glycine, H2O, 1-vinylimidazole, 4-methylpyrazole and 3-hydroxypyridine. Pseudo-octahedral NiN4F2, NiN4O2 or NiN4OF cores consist of equatorial Ni-N bonds that are equal to or slightly longer than the axial Ni-Lax bonds. By design, the zero-field splitting (D) is large in these systems and, in the presence of substantial exchange interactions (J), can be difficult to discriminate from magnetometry measurements on powder samples. Thus, we relied on pulsed-field magnetization in those cases and employed electron-spin resonance (ESR) to confirm D when J << D. The anisotropy of each compound was found to be easy-plane (D > 0) and range from ≈ 8-25 K. This work reveals a linear correlation between the ratio d(Ni-Lax)/d(Ni-Neq) and D although the ligand spectrochemical properties may also be important. We assert that this relationship allows us to predict the type of magnetocrystalline anisotropy in tailored Ni(II) quantum magnets.

Journal Keywords: quantum magnetism; anisotropy; low-dimensional; high magnetic fields; fluoride; nickel

Subject Areas: Physics, Chemistry, Materials

Instruments: I11-High Resolution Powder Diffraction