Publication

Article Metrics

Citations


Online attention

Measurement of strain evolution in overloaded roller bearings using time-of-flight neutron diffraction

DOI: 10.1016/j.matdes.2020.108571 DOI Help

Authors: A. Reid (University of Sheffield) , M. Marshall (University of Sheffield) , I. Martinez (University of Sheffield) , S. Moorby (ISIS Facility) , T. Connolley (Diamond Light Source) , M. Mostafavi (University of Bristol) , S. Kabra (ISIS Facility)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Materials & Design , VOL 190

State: Published (Approved)
Published: May 2020

Open Access Open Access

Abstract: Neutron diffraction is an established method for non-destructively characterising residual stress or observing in situ strain during external stimuli. Neutron based stroboscopic techniques have previously been introduced for measuring strains undergoing cyclic processes but have not been used for tribological applications. This work presents a novel approach for measuring the evolution of radial strain in a rotating bearing through part of the component's lifetime. A cylindrical roller bearing was pre-overloaded to increase the probability of damage within a reasonable experimental time and to help develop further understanding of the influence such events have on bearing life, notably for the application of wind turbine gearbox bearing failure. The stroboscopic neutron diffraction technique was successful in measuring time-resolved contact strain, with a significant increase in compressive radial strain being observed after a suspected failure had been detected using condition monitoring techniques, implemented for validating damage propagation. Cyclic contact strains associated with rolling contact fatigue were also evaluated using neutron diffraction.

Journal Keywords: Neutron diffraction; Stroboscopic strain; Rolling contact fatigue; Bearing overload

Subject Areas: Engineering, Technique Development


Technical Areas:

Documents:
1-s2.0-S0264127520301040-main.pdf