Publication

Article Metrics

Citations


Online attention

First example of protonation of Ruddlesden-Popper Sr2IrO4: a route to enhanced water oxidation catalysts

DOI: 10.1021/acs.chemmater.0c00432 DOI Help

Authors: Ronghuan Zhang (Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459) , Paul E. Pearce (Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459; Sorbonne Université) , Vanessa Pimenta (Institut des Matériaux Poreux de Paris, UMR 8004 CNRS) , Jordi Cabana (Advanced Photon Source; University of Illinois at Chicago; Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory) , Haifeng Li (Advanced Photon Source; University of Illinois at Chicago; Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory) , Daniel Alves Dalla Corte (Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459) , Artem M. Abakumov (Skolkovo Institute of Science and Technology) , Gwenaëlle Rousse (Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459) , Domitille Giaume (Chimie ParisTech, PSL University, CNRS) , Michael Deschamps (CNRS, CEMHTI UPR3079, Université d’Orléans) , Alexis Grimaud (Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Chemistry Of Materials

State: Published (Approved)
Published: March 2020
Diamond Proposal Number(s): 12559

Abstract: Water electrolysis is considered as a promising way to store and convert excess renewable energies into hydrogen, which is of high value for many chemical transformation processes such as the Haber-Bosch process. However, to allow for the wide-spread of the polymer electrolyte membrane water electrolysis (PEMWE) technology, the main challenge lies in the design of robust catalysts for oxygen evolution reaction (OER) under acidic conditions since most of transition metal-based oxides undergo structural degradation under these harsh acidic conditions. To broaden the variety of candidate materials as OER cata-lysts, a cation-exchange synthetic route was recently explored to reach crystalline pronated iridates with unique structural properties and stability. In this work, a new protonated phase H3.6IrO4∙3.7H2O, prepared via Sr2+/H+ cation exchange at room temperature starting from the parent Ruddlesden-Popper Sr2IrO4 phase, is described. This is the first discovery of crystalline protonated iridate forming from a perovskite-like phase, adopting a layered structure with apex-linked IrO6 octahedra. Furthermore, H3.6IrO4∙3.7H2O is found to possess not only an enhanced specific catalytic activity, superior to that of other perov-skite-based iridates, but also a mass activity comparable to that of nanosized IrOx particles, while showing an improved catalytic stability owing to its ability to reversibly exchange protons in acid.

Journal Keywords: Radiology; Electrodes; Catalysts; Physical and chemical processes; Transition metals

Subject Areas: Chemistry, Materials, Energy


Instruments: B18-Core EXAFS

Added On: 06/04/2020 13:46

Discipline Tags:

Energy Storage Energy Physical Chemistry Catalysis Energy Materials Chemistry Materials Science Chemical Engineering Engineering & Technology Perovskites Metallurgy

Technical Tags:

Spectroscopy X-ray Absorption Spectroscopy (XAS)