Publication
Article Metrics
Citations
Online attention
First example of protonation of Ruddlesden-Popper Sr2IrO4: a route to enhanced water oxidation catalysts
DOI:
10.1021/acs.chemmater.0c00432
Authors:
Ronghuan
Zhang
(Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459)
,
Paul E.
Pearce
(Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459; Sorbonne Université)
,
Vanessa
Pimenta
(Institut des Matériaux Poreux de Paris, UMR 8004 CNRS)
,
Jordi
Cabana
(Advanced Photon Source; University of Illinois at Chicago; Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory)
,
Haifeng
Li
(Advanced Photon Source; University of Illinois at Chicago; Joint Center for Energy Storage Research (JCESR), Argonne National Laboratory)
,
Daniel
Alves Dalla Corte
(Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459)
,
Artem M.
Abakumov
(Skolkovo Institute of Science and Technology)
,
Gwenaëlle
Rousse
(Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459)
,
Domitille
Giaume
(Chimie ParisTech, PSL University, CNRS)
,
Michael
Deschamps
(CNRS, CEMHTI UPR3079, Université d’Orléans)
,
Alexis
Grimaud
(Chimie du Solide et de l’Energie, UMR 8260, Collège de France; Réseau sur le Stockage Electrochimique de l’Energie (RS2E), CNRS FR 3459)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Chemistry Of Materials
State:
Published (Approved)
Published:
March 2020
Diamond Proposal Number(s):
12559
Abstract: Water electrolysis is considered as a promising way to store and convert excess renewable energies into hydrogen, which is of high value for many chemical transformation processes such as the Haber-Bosch process. However, to allow for the wide-spread of the polymer electrolyte membrane water electrolysis (PEMWE) technology, the main challenge lies in the design of robust catalysts for oxygen evolution reaction (OER) under acidic conditions since most of transition metal-based oxides undergo structural degradation under these harsh acidic conditions. To broaden the variety of candidate materials as OER cata-lysts, a cation-exchange synthetic route was recently explored to reach crystalline pronated iridates with unique structural properties and stability. In this work, a new protonated phase H3.6IrO4∙3.7H2O, prepared via Sr2+/H+ cation exchange at room temperature starting from the parent Ruddlesden-Popper Sr2IrO4 phase, is described. This is the first discovery of crystalline protonated iridate forming from a perovskite-like phase, adopting a layered structure with apex-linked IrO6 octahedra. Furthermore, H3.6IrO4∙3.7H2O is found to possess not only an enhanced specific catalytic activity, superior to that of other perov-skite-based iridates, but also a mass activity comparable to that of nanosized IrOx particles, while showing an improved catalytic stability owing to its ability to reversibly exchange protons in acid.
Journal Keywords: Radiology; Electrodes; Catalysts; Physical and chemical processes; Transition metals
Subject Areas:
Chemistry,
Materials,
Energy
Instruments:
B18-Core EXAFS
Added On:
06/04/2020 13:46
Discipline Tags:
Energy Storage
Energy
Physical Chemistry
Catalysis
Energy Materials
Chemistry
Materials Science
Chemical Engineering
Engineering & Technology
Perovskites
Metallurgy
Technical Tags:
Spectroscopy
X-ray Absorption Spectroscopy (XAS)