Article Metrics


Online attention

Displacive order–disorder behavior and intrinsic clustering of lattice distortions in Bi‐substituted NaNbO3

DOI: 10.1002/adfm.202001840 DOI Help

Authors: Igor Levin (National Institute of Standards and Technology) , Fan Yang (University of Sheffield) , Russell Maier (National Institute of Standards and Technology) , William J. Laws (National Institute of Standards and Technology) , Dean S. Keeble (Diamond Light Source) , Giannantonio Cibin (Diamond Light Source) , Derek C. Sinclair (University of Sheffield)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Advanced Functional Materials

State: Published (Approved)
Published: June 2020
Diamond Proposal Number(s): 16168 , 16460

Abstract: Perovskite‐like NaNbO3‐Bi1/3NbO3 solid solutions are studied to understand the interactions between octahedral rotations, which dominate the structural behavior of NaNbO3 and displacive disorder of Bi present in Bi1/3NbO3. Models of instantaneous structures for representative compositions are obtained by refining atomic coordinates against X‐ray total scattering and extended X‐ray‐absorption fine structure data, with additional input obtained from transmission electron microscopy. A mixture of distinct cations and vacancies on the cuboctahedral A‐sites in Na1−3x Bix NbO3 (x ≤ 0.2) results in 3D nanoscale modulations of structural distortions. This phenomenon is determined by the inevitable correlations in the chemical composition of adjacent unit cells according to the structure type—an intrinsic property of any nonmolecular crystals. Octahedral rotations become suppressed as x increases. Out‐of‐phase rotations vanish for x > 0.1, whereas in‐phase tilts persist up to x = 0.2, although for this composition their correlation length becomes limited to the nanoscale. The loss of out‐of‐phase tilting is accompanied by qualitative changes in the probability density distributions for Bi and Nb, with both species becoming disordered over loci offset from the centers of their respective oxygen cages. Symmetry arguments are used to attribute this effect to different strengths of the coupling between the cation displacements and out‐of‐phase versus in‐phase rotations. The displacive disorder of Bi and Nb combined with nanoscale clustering of lattice distortions are primarily responsible for the anomalous broadening of the temperature dependence of the dielectric constant.

Journal Keywords: dielectric; disorder; pair distribution functions; perovskites; solid solutions; X‐ray scattering

Subject Areas: Materials, Chemistry

Instruments: B18-Core EXAFS , I15-1-X-ray Pair Distribution Function (XPDF)