Publication

Article Metrics

Citations


Online attention

Impact of neospora caninum infection on the bioenergetics and transcriptome of cerebrovascular endothelial cells

DOI: 10.3390/pathogens9090710 DOI Help

Authors: Hany M. Elsheikha (University of Nottingham) , Mamdowh Alkurashi (University of Nottingham; King Saud University) , Suzy Palfreman (University of Nottingham) , Marcos Castellanos (University of Nottingham) , Kenny Kong (University of Nottingham) , Evita Ning (University of Strathclyde) , Nashwa A. Elsaied (University of Nottingham) , Kalotina Geraki (Diamond Light Source) , William Macnaughtan (University of Nottingham)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Pathogens , VOL 9

State: Published (Approved)
Published: August 2020
Diamond Proposal Number(s): 7254

Open Access Open Access

Abstract: In this work, the effects of the protozoan Neospora caninum on the bioenergetics, chemical composition, and elemental content of human brain microvascular endothelial cells (hBMECs) were investigated. We showed that N. caninum can impair cell mitochondrial (Mt) function and causes an arrest in host cell cycling at S and G2 phases. These adverse effects were also associated with altered expression of genes involved in Mt energy metabolism, suggesting Mt dysfunction caused by N. caninum infection. Fourier Transform Infrared (FTIR) spectroscopy analysis of hBMECs revealed alterations in the FTIR bands as a function of infection, where infected cells showed alterations in the absorption bands of lipid (2924 cm−1), amide I protein (1649 cm−1), amide II protein (1537 cm−1), nucleic acids and carbohydrates (1092 cm−1, 1047 cm−1, and 939 cm−1). By using quantitative synchrotron radiation X-ray fluorescence (μSR-XRF) imaging and quantification of the trace elements Zn, Cu and Fe, we detected an increase in the levels of Zn and Cu from 3 to 24 h post infection (hpi) in infected cells compared to control cells, but there were no changes in the level of Fe. We also used Affymetrix array technology to investigate the global alteration in gene expression of hBMECs and rat brain microvascular endothelial cells (rBMVECs) in response to N. caninum infection at 24 hpi. The result of transcriptome profiling identified differentially expressed genes involved mainly in immune response, lipid metabolism and apoptosis. These data further our understanding of the molecular events that shape the interaction between N. caninum and blood-brain-barrier endothelial cells.

Journal Keywords: Neospora caninum; host–pathogen interaction; blood-brain barrier; infrared spectroscopy; Synchrotron-based XRF mapping; differential gene expression

Subject Areas: Biology and Bio-materials, Chemistry


Instruments: I18-Microfocus Spectroscopy

Added On: 07/09/2020 15:26

Documents:
pathogens-09-00710-v2.pdf

Discipline Tags:

Pathogens Infectious Diseases Health & Wellbeing Biochemistry Genetics Chemistry Life Sciences & Biotech Parasitology Veterinary Medicine

Technical Tags:

Imaging X-ray Fluorescence (XRF)