Publication
Article Metrics
Citations
Online attention
Targeting OGG1 arrests cancer cell proliferation by inducing replication stress
Authors:
Torkild
Visnes
(Karolinska Institutet; SINTEF Industry)
,
Carlos
Benítez-Buelga
(Karolinska Institutet)
,
Armando
Cázares-Körner
(Karolinska Institutet)
,
Kumar
Sanjiv
(Karolinska Institutet)
,
Bishoy M. F.
Hanna
(Karolinska Institutet)
,
Oliver
Mortusewicz
(Karolinska Institutet)
,
Varshni
Rajagopal
(Karolinska Institutet)
,
Julian J.
Albers
(Karolinska Institutet)
,
Daniel W
Hagey
(Karolinska Institutet)
,
Tove
Bekkhus
(Karolinska Institutet)
,
Saeed
Eshtad
(Karolinska Institutet)
,
Juan Miguel
Baquero
(Spanish National Cancer Research Centre (CNIO))
,
Geoffrey
Masuyer
(Stockholm University; University of Bath)
,
Olov
Wallner
(Karolinska Institutet)
,
Sarah
Müller
(Karolinska Institutet)
,
Therese
Pham
(Karolinska Institutet)
,
Camilla
Göktürk
(Karolinska Institutet)
,
Azita
Rasti
(Karolinska Institutet)
,
Sharda
Suman
(Karolinska Institutet)
,
Raúl
Torres-Ruiz
(Spanish National Cancer Research Centre (CNIO); University of Barcelona)
,
Antonio
Sarno
(Norwegian University of Science and Technology; Research and Innovation in Central Norway; SINTEF Ocean)
,
Elisée
Wiita
(Karolinska Institutet)
,
Evert J.
Homan
(Karolinska Institutet)
,
Stella
Karsten
(Karolinska Institutet)
,
Karthick
Marimuthu
(Karolinska Institutet)
,
Maurice
Michel
(Karolinska Institutet)
,
Tobias
Koolmeister
(Karolinska Institutet)
,
Martin
Scobie
(Karolinska Institutet)
,
Olga
Loseva
(Karolinska Institutet)
,
Ingrid
Almlöf
(Karolinska Institutet)
,
Judith Edda
Unterlass
(Karolinska Institutet)
,
Aleksandra
Pettke
(Karolinska Institutet)
,
Johan
Boström
(Karolinska Institutet)
,
Monica
Pandey
(University of Sheffield)
,
Helge
Gad
(University of Sheffield)
,
Patrick
Herr
(University of Sheffield)
,
Ann-Sofie
Jemth
(Karolinska Institutet)
,
Samir
El andaloussi
(Karolinska Institutet)
,
Christina
Kalderén
(Karolinska Institutet)
,
Sandra
Rodriguez-Perales
(Spanish National Cancer Research Centre (CNIO))
,
Javier
Benítez
(Spanish National Cancer Research Centre (CNIO); Spanish Network on Rare Diseases (CIBERER))
,
Hans E
Krokan
(Norwegian University of Science and Technology; Research and Innovation in Central Norway)
,
Mikael
Altun
(Karolinska Institutet)
,
Pal
Stenmark
(Stockholm University; Lund University)
,
Ulrika Warpman
Berglund
(Karolinska Institutet)
,
Thomas
Helleday
(Karolinska Institutet; University of Sheffield)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Nucleic Acids Research
, VOL 434
State:
Published (Approved)
Published:
November 2020
Diamond Proposal Number(s):
15806

Abstract: Altered oncogene expression in cancer cells causes loss of redox homeostasis resulting in oxidative DNA damage, e.g. 8-oxoguanine (8-oxoG), repaired by base excision repair (BER). PARP1 coordinates BER and relies on the upstream 8-oxoguanine-DNA glycosylase (OGG1) to recognise and excise 8-oxoG. Here we hypothesize that OGG1 may represent an attractive target to exploit reactive oxygen species (ROS) elevation in cancer. Although OGG1 depletion is well tolerated in non-transformed cells, we report here that OGG1 depletion obstructs A3 T-cell lymphoblastic acute leukemia growth in vitro and in vivo, validating OGG1 as a potential anti-cancer target. In line with this hypothesis, we show that OGG1 inhibitors (OGG1i) target a wide range of cancer cells, with a favourable therapeutic index compared to non-transformed cells. Mechanistically, OGG1i and shRNA depletion cause S-phase DNA damage, replication stress and proliferation arrest or cell death, representing a novel mechanistic approach to target cancer. This study adds OGG1 to the list of BER factors, e.g. PARP1, as potential targets for cancer treatment.
Subject Areas:
Biology and Bio-materials,
Chemistry,
Medicine
Instruments:
I04-Macromolecular Crystallography
Added On:
25/11/2020 13:44
Documents:
gkaa1048.pdf
Discipline Tags:
Non-Communicable Diseases
Health & Wellbeing
Cancer
Biochemistry
Chemistry
Drug Discovery
Life Sciences & Biotech
Technical Tags:
Diffraction
Macromolecular Crystallography (MX)