Article Metrics


Online attention

Interplay between morphology and magnetoelectric coupling in Fe/PMN-PT multiferroic heterostructures studied by microscopy techniques

DOI: 10.1103/PhysRevMaterials.4.114418 DOI Help

Authors: Federico Motti (Istituto Officina dei Materiali (IOM-CNR); Università degli Studi di Milano) , G. Vinai (Istituto Officina dei Materiali (IOM-CNR)) , Valentina Bonanni (Istituto Officina dei Materiali (IOM-CNR); Università degli Studi di Milano) , Vincent Polewczyk (Istituto Officina dei Materiali (IOM-CNR)) , Paola Mantegazza (Università degli Studi di Milano) , Thomas Forrest (Diamond Light Source) , Francesco Maccherozzi (Diamond Light Source) , Stefania Benedetti (CNR, Istituto Nanoscienze) , Christian Rinaldi (Politecnico di Milano; Istituto di Fotonica e Nanotecnologie (IFN-CNR)) , Matteo Cantoni (Politecnico di Milano) , Damiano Cassese (A.P.E. Research srl) , Stefano Prato (A.P.E. Research srl) , Sarnjeet S. Dhesi (Diamond Light Source) , Giorgio Rossi (Istituto Officina dei Materiali (IOM-CNR); Università degli Studi di Milano) , Giancarlo Panaccione (Istituto Officina dei Materiali (IOM-CNR)) , Piero Torelli (Istituto Officina dei Materiali (IOM-CNR))
Co-authored by industrial partner: Yes

Type: Journal Paper
Journal: Physical Review Materials , VOL 4

State: Published (Approved)
Published: November 2020
Diamond Proposal Number(s): 18810

Abstract: A ferromagnetic (FM) thin film deposited on a substrate of Pb ( Mg 1 / 3 Nb 2 / 3 ) O 3 − PbTiO 3 (PMN-PT) is an appealing heterostructure for the electrical control of magnetism, which would enable nonvolatile memories with ultralow-power consumption. Reversible and electrically controlled morphological changes at the surface of PMN-PT suggest that the magnetoelectric effects are more complex than the commonly used “strain-mediated” description. Here we show that changes in substrate morphology intervene in magnetoelectric coupling as a key parameter interplaying with strain. Magnetic-sensitive microscopy techniques are used to study magnetoelectric coupling in Fe/PMN-PT at different length scales, and compare different substrate cuts. The observed rotation of the magnetic anisotropy is connected to the changes in morphology, and mapped in the crack pattern at the mesoscopic scale. Ferroelectric polarization switching induces a magnetic field-free rotation of the magnetic domains at micrometer scale, with a wide distribution of rotation angles. Our results show that the relationship between the rotation of the magnetic easy axis and the rotation of the in-plane component of the electric polarization is not straightforward, as well as the relationship between ferroelectric domains and crack pattern. The understanding and control of this phenomenon is crucial to develop functional devices based on FM/PMN-PT heterostructures.

Journal Keywords: Ferroelectricity; Fracture; Magnetic anisotropy; Magnetoelastic effect; Magnetoelectric effect; Heterostructures; Multiferroics; Magneto-optical Kerr effect; Photoelectron emission microscopy; X-ray magnetic circular dichroism

Diamond Keywords: Ferroelectricity; Ferromagnetism

Subject Areas: Materials, Physics

Instruments: I06-Nanoscience

Added On: 10/12/2020 11:38

Discipline Tags:

Surfaces Quantum Materials Hard condensed matter - electronic properties Multiferroics Physics Magnetism Materials Science interfaces and thin films

Technical Tags:

Microscopy Electron Microscopy (EM) PhotoEmmission Electron Microscopy (PEEM)