Publication
Article Metrics
Citations
Online attention
Decoupling of lattice and orbital degrees of freedom in an iron-pnictide superconductor
DOI:
10.1103/PhysRevResearch.3.023220
Authors:
C. E.
Matt
(Swiss Light Source; Universität Zürich)
,
O.
Ivashko
(Universität Zürich)
,
M.
Horio
(Universität Zürich)
,
J.
Choi
(Universität Zürich)
,
Q.
Wang
(Universität Zürich)
,
D.
Sutter
(University of Zurich)
,
N.
Dennler
(Universität Zürich)
,
M. H.
Fischer
(Universität Zürich)
,
S.
Katrych
(École Polytechnique Fédérale de Lausanne (EPFL))
,
L.
Forro
(École Polytechnique Fédérale de Lausanne (EPFL))
,
J.
Ma
(Swiss Light Source)
,
B.
Fu
(Swiss Light Source)
,
B. Q.
Lv
(Swiss Light Source)
,
M. V.
Zimmermann
(Deutsches Elektronen-Synchrotron DESY)
,
T. K.
Kim
(Diamond Light Source)
,
N. C.
Plumb
(Swiss Light Source)
,
N.
Xu
(Swiss Light Source)
,
M.
Shi
(Swiss Light Source)
,
Johan
Chang
(Universität Zürich)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Physical Review Research
, VOL 3
State:
Published (Approved)
Published:
June 2021
Diamond Proposal Number(s):
16104
Abstract: The interplay between structural and electronic phases in iron-based superconductors is a central theme in the search for the superconducting pairing mechanism. While electronic nematicity is competing with superconductivity, the effect of purely structural orthorhombic order is unexplored. Here, using x-ray diffraction and angle-resolved photoemission spectroscopy, we reveal a structural orthorhombic phase in the electron-doped iron-pnictide superconductor Pr 4 Fe 2 As 2 Te 0.88 O 4 ( T c = 25 K), which is distinct from orthorhombicity in the nematic phase in underdoped pnictides. Despite the high electron doping we find an exceptionally high orthorhombic onset temperature ( T ort ∼ 250 K), no signatures of phase competition with superconductivity, and absence of electronic nematic order as the driving mechanism for orthorhombicity. Combined, our results establish a high-temperature phase in the phase diagram of iron-pnictide superconductors and impose strong constraints for the modeling of their superconducting pairing mechanism.
Journal Keywords: Crystal structure; Phase transitions; Structural order parameter; Superconductivity; Transition temperature; Iron-based superconductors; Strongly correlated systems; Angle-resolved photoemission spectroscopy; Density functional theory; X-ray diffraction
Subject Areas:
Physics,
Materials
Instruments:
I05-ARPES
Other Facilities: P07 at PETRA III; SIS at Swiss Light Source
Added On:
28/06/2021 11:57
Documents:
PhysRevResearch.3.023220.pdf
Discipline Tags:
Superconductors
Quantum Materials
Hard condensed matter - electronic properties
Physics
Materials Science
Technical Tags:
Spectroscopy
Angle Resolved Photoemission Spectroscopy (ARPES)