Article Metrics


Online attention

3D cyclorama for digital unrolling and visualisation of deformed tubes

DOI: 10.1038/s41598-021-93184-x DOI Help

Authors: Charalambos Rossides (University of Southampton) , Sylvia L. F. Pender (University of Southampton) , Philipp Schneider (University of Southampton)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Scientific Reports , VOL 11

State: Published (Approved)
Published: July 2021
Diamond Proposal Number(s): 22588 , 17241

Open Access Open Access

Abstract: Colonic crypts are tubular glands that multiply through a symmetric branching process called crypt fission. During the early stages of colorectal cancer, the normal fission process is disturbed, leading to asymmetrical branching or budding. The challenging shapes of the budding crypts make it difficult to prepare paraffin sections for conventional histology, resulting in colonic cross sections with crypts that are only partially visible. To study crypt budding in situ and in three dimensions (3D), we employ X-ray micro-computed tomography to image intact colons, and a new method we developed (3D cyclorama) to digitally unroll them. Here, we present, verify and validate our ‘3D cyclorama’ method that digitally unrolls deformed tubes of non-uniform thickness. It employs principles from electrostatics to reform the tube into a series of onion-like surfaces, which are mapped onto planar panoramic views. This enables the study of features extending over several layers of the tube’s depth, demonstrated here by two case studies: (i) microvilli in the human placenta and (ii) 3D-printed adhesive films for drug delivery. Our 3D cyclorama method can provide novel insights into a wide spectrum of applications where digital unrolling or flattening is necessary, including long bones, teeth roots and ancient scrolls.

Journal Keywords: Applied mathematics; Cancer imaging; Colorectal cancer; Computational science; Engineering; Software; Tumour biomarkers; X-rays

Diamond Keywords: Colorectal Cancer

Subject Areas: Biology and Bio-materials, Technique Development

Instruments: I13-2-Diamond Manchester Imaging

Added On: 28/07/2021 11:39


Discipline Tags:

Non-Communicable Diseases Health & Wellbeing Cancer Technique Development - Life Sciences & Biotech Life Sciences & Biotech

Technical Tags:

Imaging Tomography