Publication

Article Metrics

Citations


Online attention

Microcavity-like exciton-polaritons can be the primary photoexcitation in bare organic semiconductors

DOI: 10.1038/s41467-021-26617-w DOI Help

Authors: Raj Pandya (University of Cambridge) , Richard Y. S. Chen (University of Cambridge) , Qifei Gu (University of Cambridge) , Jooyoung Sung (University of Cambridge) , Christoph Schnedermann (University of Cambridge) , Oluwafemi S. Ojambati (University of Cambridge) , Rohit Chikkaraddy (University of Cambridge) , Jeffrey Gorman (University of Cambridge) , Gianni Jacucci (University of Cambridge) , Olimpia D. Onelli (University of Cambridge) , Tom Willhammar (Stockholm University) , Duncan N. Johnstone (University of Cambridge) , Sean M. Collins (University of Cambridge) , Paul A. Midgley (University of Cambridge) , Florian Auras (University of Cambridge) , Tomi Baikie (University of Cambridge) , Rahul Jayaprakash (University of Sheffield) , Fabrice Mathevet (Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université) , Richard Soucek (Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université) , Matthew Du (University of California San Diego) , Antonios M. Alvertis (University of Cambridge) , Arjun Ashoka (University of Cambridge) , Silvia Vignolini (University of Cambridge) , David G. Lidzey (University of Sheffield) , Jeremy J. Baumberg (University of Cambridge) , Richard H. Friend (University of Cambridge) , Thierry Barisien (Institut des NanoSciences de Paris (INSP), Sorbonne Université) , Laurent Legrand (Institut des NanoSciences de Paris (INSP), Sorbonne Université) , Alex W. Chin (Institut des NanoSciences de Paris (INSP), Sorbonne Université) , Joel Yuen-Zhou (University of California San Dieg) , Semion K. Saikin (Harvard University; Kebotix Inc) , Philipp Kukura (University of Oxford) , Andrew J. Musser (Cornell University) , Akshay Rao (University of Cambridge)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Nature Communications , VOL 12

State: Published (Approved)
Published: November 2021
Diamond Proposal Number(s): 20527

Open Access Open Access

Abstract: Strong-coupling between excitons and confined photonic modes can lead to the formation of new quasi-particles termed exciton-polaritons which can display a range of interesting properties such as super-fluidity, ultrafast transport and Bose-Einstein condensation. Strong-coupling typically occurs when an excitonic material is confided in a dielectric or plasmonic microcavity. Here, we show polaritons can form at room temperature in a range of chemically diverse, organic semiconductor thin films, despite the absence of an external cavity. We find evidence of strong light-matter coupling via angle-dependent peak splittings in the reflectivity spectra of the materials and emission from collective polariton states. We additionally show exciton-polaritons are the primary photoexcitation in these organic materials by directly imaging their ultrafast (5 × 106 m s−1), ultralong (~270 nm) transport. These results open-up new fundamental physics and could enable a new generation of organic optoelectronic and light harvesting devices based on cavity-free exciton-polaritons.

Journal Keywords: Electronic properties and materials; Energy transfer; Light harvesting

Diamond Keywords: Semiconductors

Subject Areas: Physics, Materials

Diamond Offline Facilities: Electron Physical Sciences Imaging Centre (ePSIC)
Instruments: E01-JEM ARM 200CF

Added On: 16/11/2021 19:57

Documents:
s41467-021-26617-w.pdf

Discipline Tags:

Hard condensed matter - electronic properties Physics Electronics Materials Science

Technical Tags:

Microscopy Electron Microscopy (EM) Transmission Electron Microscopy (TEM)