Article Metrics


Online attention

The impact of redox, hydrolysis and dehydration chemistry on the structural and magnetic properties of magnetoferritin prepared in variable thermal conditions

DOI: 10.3390/molecules26226960 DOI Help

Authors: Lucia Balejčíková (Institute of Hydrology, Slovak Academy of Sciences) , Karel Saksl (Institute of Materials Research, Slovak Academy of Science) , Jozef Kováč (Institute of Experimental Physics, Slovak Academy of Sciences) , Anne Martel (Institut Laue-Langevin) , Vasil M. Garamus (Helmholtz-Zentrum Hereon) , Mikhail V. Avdeev (Joint Institute for Nuclear Research) , Viktor I. Petrenko (Basque Centre for Materials; IKERBASQUE, Basque Foundation for Science) , László Almásy (Institute for Energy Security and Environmental Safety, Hungary) , Peter Kopčanský (Institute of Experimental Physics, Slovak Academy of Sciences)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Molecules , VOL 26

State: Published (Approved)
Published: November 2021
Diamond Proposal Number(s): 17415

Open Access Open Access

Abstract: Ferritin, a spherically shaped protein complex, is responsible for iron storage in bacteria, plants, animals, and humans. Various ferritin iron core compositions in organisms are associated with specific living requirements, health state, and different biochemical roles of ferritin isomers. Magnetoferritin, a synthetic ferritin derivative, serves as an artificial model system of unusual iron phase structures found in humans. We present the results of a complex structural study of magnetoferritins prepared by controlled in vitro synthesis. Using various complementary methods, it was observed that manipulation of the synthesis technology can improve the physicochemical parameters of the system, which is useful in applications. Thus, a higher synthesis temperature leads to an increase in magnetization due to the formation of the magnetite phase. An increase in the iron loading factor has a more pronounced impact on the protein shell structure in comparison with the pH of the aqueous medium. On the other hand, a higher loading factor at physiological temperature enhances the formation of an amorphous phase instead of magnetite crystallization. It was confirmed that the iron-overloading effect alone (observed during pathological events) cannot contribute to the formation of magnetite.

Journal Keywords: magnetoferritin; magnetite; loading factor; protein stability; aqueous medium

Subject Areas: Chemistry, Materials, Physics

Instruments: I11-High Resolution Powder Diffraction

Added On: 26/11/2021 08:47

Discipline Tags:

Physics Physical Chemistry Chemistry Magnetism Materials Science Nanoscience/Nanotechnology

Technical Tags:

Diffraction X-ray Powder Diffraction