Article Metrics


Online attention

Dynamics at polarized carbon dioxide–iron oxyhydroxide interfaces unveil the origin of multicarbon product formation

DOI: 10.1021/acscatal.1c04296 DOI Help

Authors: Rosa Arrigo (University of Salford; Diamond Light Source) , Raoul Blume (Fritz-Haber-Institut der Max-Planck Gesellschaft; Max-Planck-Institut für Chemische Energiekonversion) , Verena Streibel (ritz-Haber-Institut der Max-Planck Gesellschaft) , Chiara Genovese (University of Messina) , Alberto Roldan (Cardiff University) , Manfred E. Schuster (Johnson Matthey Technology Centre) , Claudio Ampelli (niversity of Messina) , Siglinda Perathoner (University of Messina) , Juan J. Velasco Vélez (Fritz-Haber-Institut der Max-Planck Gesellschaft; Max-Planck-Institut für Chemische Energiekonversion) , Michael Hävecker (Fritz-Haber-Institut der Max-Planck Gesellschaft; Max-Planck-Institut für Chemische Energiekonversion) , Axel Knop-Gericke (Fritz-Haber-Institut der Max-Planck Gesellschaft; Max-Planck-Institut für Chemische Energiekonversion) , Robert Schlögl (Fritz-Haber-Institut der Max-Planck Gesellschaft; Max-Planck-Institut für Chemische Energiekonversio) , Gabriele Centi (University of Messina)
Co-authored by industrial partner: Yes

Type: Journal Paper
Journal: Acs Catalysis

State: Published (Approved)
Published: December 2021

Open Access Open Access

Abstract: Surface-sensitive ambient pressure X-ray photoelectron spectroscopy and near-edge X-ray absorption fine structure spectroscopy combined with an electrocatalytic reactivity study, multilength-scale electron microscopy, and theoretical modeling provide insights into the gas-phase selective reduction of carbon dioxide to isopropanol on a nitrogen-doped carbon-supported iron oxyhydroxide electrocatalyst. Dissolved atomic carbon forms at relevant potentials for carbon dioxide reduction from the reduction of carbon monoxide chemisorbed on the surface of the ferrihydrite-like phase. Theoretical modeling reveals that the ferrihydrite structure allows vicinal chemisorbed carbon monoxide in the appropriate geometrical arrangement for coupling. Based on our observations, we suggest a mechanism of three-carbon-atom product formation, which involves the intermediate formation of atomic carbon that undergoes hydrogenation in the presence of hydrogen cations upon cathodic polarization. This mechanism is effective only in the case of thin ferrihydrite-like nanostructures coordinated at the edge planes of the graphitic support, where nitrogen edge sites stabilize these species and lower the overpotential for the reaction. Larger ferrihydrite-like nanoparticles are ineffective for electron transport.

Journal Keywords: N-doping; XPS; CO2RR; Fe oxyhydroxide; C−C coupling

Subject Areas: Chemistry, Environment

Diamond Offline Facilities: Electron Physical Sciences Imaging Centre (ePSIC)
Instruments: E01-JEM ARM 200CF

Other Facilities: ISISS at Helmholtz-Zentrum Berlin für Materialien und Energie

Added On: 27/12/2021 10:46

Discipline Tags:

Earth Sciences & Environment Climate Change Physical Chemistry Catalysis Chemistry

Technical Tags:

Microscopy Electron Microscopy (EM) Scanning Transmission Electron Microscopy (STEM)