Article Metrics


Online attention

In situ single-crystal X-ray diffraction studies of physisorption and chemisorption of SO2 within a metal–organic framework and its competitive adsorption with water

DOI: 10.1021/jacs.3c11847 DOI Help

Authors: Russell M. Main (University of St Andrews) , Simon M. Vornholt (Stony Brook University) , Romy Ettlinger (University of St Andrews) , Philip Netzsch (University of St Andrews) , Maximillian G. Stanzione (University of St Andrews) , Cameron M. Rice (University of St Andrews) , Caroline Elliott (University of St Andrews) , Samantha E. Russell (University of St Andrews) , Mark R. Warren (Diamond Light Source) , Sharon E. Ashbrook (University of St Andrews) , Russell E. Morris (University of St Andrews)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Journal Of The American Chemical Society

State: Published (Approved)
Published: January 2024
Diamond Proposal Number(s): 29217 , 32865

Open Access Open Access

Abstract: Living on an increasingly polluted planet, the removal of toxic pollutants such as sulfur dioxide (SO2) from the troposphere and power station flue gas is becoming more and more important. The CPO-27/MOF-74 family of metal–organic frameworks (MOFs) with their high densities of open metal sites is well suited for the selective adsorption of gases that, like SO2, bind well to metals and have been extensively researched both practically and through computer simulations. However, until now, focus has centered upon the binding of SO2 to the open metal sites in this MOF (called chemisorption, where the adsorbent–adsorbate interaction is through a chemical bond). The possibility of physisorption (where the adsorbent–adsorbate interaction is only through weak intermolecular forces) has not been identified experimentally. This work presents an in situ single-crystal X-ray diffraction (scXRD) study that identifies discrete adsorption sites within Ni-MOF-74/Ni-CPO-27, where SO2 is both chemisorbed and physisorbed while also probing competitive adsorption of SO2 of these sites when water is present. Further features of this site have been confirmed by variable SO2 pressure scXRD studies, DFT calculations, and IR studies.

Diamond Keywords: Gas Separation

Subject Areas: Environment, Chemistry, Materials

Instruments: I19-Small Molecule Single Crystal Diffraction

Added On: 29/01/2024 08:35


Discipline Tags:

Desertification & Pollution Earth Sciences & Environment Chemistry Materials Science Metal-Organic Frameworks Metallurgy Organometallic Chemistry

Technical Tags:

Diffraction Single Crystal X-ray Diffraction (SXRD)