Publication
Article Metrics
Citations
Online attention
Bias-free access to orbital angular momentum in two-dimensional quantum materials
DOI:
10.1103/PhysRevLett.132.196401
Authors:
Jonas
Erhardt
(Universität Würzburg)
,
Cedric
Schmitt
(Universität Würzburg)
,
Philipp
Eck
(Universität Würzburg)
,
Matthias
Schmitt
(Universität Würzburg; Diamond Light Source)
,
Philipp
Kessler
(Universität Würzburg)
,
Kyungchan
Lee
(Universität Würzburg)
,
Timur
Kim
(Diamond Light Source)
,
Cephise
Cacho
(Diamond Light Source)
,
Iulia
Cojocariu
(Elettra-Sincrotrone; Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH; Università degli Studi di Trieste)
,
Daniel
Baranowski
(Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH)
,
Vitaliy
Feyer
(Peter Grünberg Institute (PGI-6), Forschungszentrum Jülich GmbH; Universität Duisburg-Essen)
,
Louis
Veyrat
(Universität Würzburg; IFW Dresden; CNRS-INSA-UJF-UPS)
,
Giorgio
Sangiovanni
(Universität Würzburg)
,
Ralph
Claessen
(Universität Würzburg)
,
Simon
Moser
(Universität Würzburg)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Physical Review Letters
, VOL 132
State:
Published (Approved)
Published:
May 2024
Diamond Proposal Number(s):
30583
Abstract: The demonstration of a topological band inversion constitutes the most elementary proof of a quantum spin Hall insulator (QSHI). On a fundamental level, such an inverted band gap is intrinsically related to the bulk Berry curvature, a gauge-invariant fingerprint of the wave function’s quantum geometric properties in Hilbert space. Intimately tied to orbital angular momentum (OAM), the Berry curvature can be, in principle, extracted from circular dichroism in angle-resolved photoemission spectroscopy (CD-ARPES), were it not for interfering final state photoelectron emission channels that obscure the initial state OAM signature. Here, we outline a full-experimental strategy to avoid such interference artifacts and isolate the clean OAM from the CD-ARPES response. Bench-marking this strategy for the recently discovered atomic monolayer system indenene, we demonstrate its distinct QSHI character and establish CD-ARPES as a scalable bulk probe to experimentally classify the topology of two-dimensional quantum materials with time reversal symmetry.
Journal Keywords: Quantum spin Hall effect; Monolayer films; Angle-resolved photoemission spectroscopy; Topology
Subject Areas:
Materials,
Physics
Instruments:
I05-ARPES
Other Facilities: NanoESCA at Elettra
Added On:
09/05/2024 08:55
Discipline Tags:
Quantum Materials
Physics
Hard condensed matter - structures
Materials Science
Technical Tags:
Spectroscopy
Angle Resolved Photoemission Spectroscopy (ARPES)