Publication

3D Detectors for Synchrotron Applications

Authors: David Pennicard (University of Glasgow)
Co-authored by industrial partner: No

Type: Thesis

State: Published (Approved)
Published: April 2009

Open Access Open Access

Abstract: 3D detectors are a novel variety of photodiode radiation detector, invented by Parker, Kenney and Segal (1997). Instead of having n- and p-type contacts on the front and back surfaces of a silicon substrate, like a standard photodiode, they have columns of doped material passing through the thickness of the silicon. This structure means that the detector can combine a reasonable substrate thickness with a very small electrode spacing, resulting in a low depletion voltage, fast charge collection and low charge sharing. These detectors have a couple of promising applications. Their fast charge collection and low depletion voltage should make them very radiation-tolerant. So, they could be used for future particle physics experiments at the Super Large Hadron Collider (SLHC), where high levels of radiation damage are expected. Also, their low charge sharing means they could potentially improve X-ray diffraction measurements at synchrotrons such as Diamond Light Source. This would allow these experiments, for example, to determine the structures of biological molecules more accurately. However, before 3D devices can be used in practical experiments, their design and fabrication must be optimised to ensure that reliable, high-performance detectors can be produced on a reasonably large scale. The aim of this thesis is to evaluate and understand the behaviour of a variety of 3D detectors using a combination of lab tests and computer simulations. Using these results, future fabrication runs can then be re-designed to improve their performance.

Subject Areas: Technique Development


Instruments: B16-Test Beamline