Publication
Article Metrics
Citations
Online attention
Perovskite phase relations in the system CaO–MgO–TiO2–SiO2 and implications for deep mantle lithologies
Authors:
L. S.
Armstrong
(University of Bristol)
,
M. J.
Walter
(University of Bristol)
,
J. R.
Tuff
(University of Bristol)
,
Oliver
Lord
(University of Bristol)
,
A. R.
Lennie
(Diamond Light Source)
,
A. K.
Kleppe
(Diamond Light Source)
,
S. M.
Clark,
(Lawrence Berkeley National Laboratory)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Journal Of Petrology
, VOL 53 (3)
, PAGES 611 - 635
State:
Published (Approved)
Published:
February 2012
Diamond Proposal Number(s):
820
Abstract: Experiments at 20–97 GPa and 2000 K in the system CaO–MgO–TiO2–SiO2 constrain phase relations involving Mg-rich and Ca-rich perovskite solid solutions at conditions relevant to the Earth's deep Transition Zone and lower mantle. Bulk compositions were investigated with molar Ti/(Ti + Si) up to 0·5 within the quasi-ternary ‘perovskite plane’, which is defined by a reciprocal solution among the components MgSiO3, MgTiO3, CaSiO3, and CaTiO3. Multi-anvil experiments at 20 GPa and 2000 K on bulk compositions within the plane produce akimotoite coexisting with Ca-perovskites that lie close to the CaSiO3–CaTiO3 join. Higher-pressure experiments using a laser-heated diamond anvil cell constrain the position of a two-perovskite field that extends into the perovskite plane from the solvus along the MgSiO3–CaSiO3 binary join, WHERE limited mutual solubility exists between MgSiO3 and CaSiO3 perovskites. On the join MgSiO3–MgTiO3, MgTiO3 solubility in MgSiO3 perovskite increases with pressure, with MgSi0·8Ti0·2O3 perovskite stable at ∼50 GPa. Limited reciprocal solution at ∼25 GPa results in an expansive two-perovskite field that occupies much of the Si-rich portion of the perovskite plane. Solution of Ti into Mg-rich and Ca-rich perovskites enhances the solubility of reciprocal Ca and Mg components, respectively. Increase in pressure promotes reciprocal solution, and the two-phase field collapses rapidly with pressure toward the MgSiO3–CaSiO3 join. We find that a single-phase, orthorhombic perovskite with near equimolar Ca and Mg is stable in a composition with Ti/(Ti + Si) of only 0·05 at 97 GPa, requiring that by this pressure the two-phase field occupies a small area close to the MgSiO3–CaSiO3 join. On the basis of experiments at∼1500 K, temperature has only a mild effect on the position of the Ca-rich limb of the solvus. Ca(Ti,Si)O3 mineral inclusions in deep sublithospheric diamonds could not have formed in equilibrium with Mg-perovskite owing to their virtual lack of MgSiO3 component at pressures of Mg-perovskite stability, but may have equilibrated with Transition Zone MgSiO3-rich phases at lower pressures; this observation can be extended generally to near-endmember CaSiO3 inclusions. On an iron-free basis, the average bulk compositions of clinopyroxene–ilmenite and orthopyroxene–ilmenite megacrysts from kimberlites plot in single-perovskite fields at pressures greater than about 45 and 65 GPa, respectively, when projected onto the perovskite plane. We predict that the effect of iron will not be large, and estimate that single-phase perovskites may form at somewhat lower pressures than in the iron-free system. Thus, the origin of pyroxene–ilmenite megacrysts from single-phase perovskite solutions in the lower mantle is plausible on the basis of phase relations, although a lower pressure magmatic origin appears more likely. Deeply subducted Ti-rich lithologies such as ocean-island basalt will crystallize a single perovskite rather than a two-perovskite assemblage beginning at pressures of ∼80 GPa. Normal mid-ocean ridge basalt and primitive mantle peridotite are expected to remain within a two-phase perovskite field until Mg-perovskite transforms to post-perovskite.
Journal Keywords: Perovskite; Inclusions
Subject Areas:
Chemistry,
Earth Science
Instruments:
I15-Extreme Conditions
Other Facilities: 12.2.2 at Advanced Light Source
Added On:
30/09/2012 12:54
Discipline Tags:
Earth Sciences & Environment
Mineralogy
Geology
Perovskites
Geochemistry
Technical Tags:
Diffraction
X-ray Powder Diffraction