Article Metrics


Online attention

Mutations of an NAD(P)H-dependent flavoprotein monooxygenase that influence cofactor promiscuity and enantioselectivity

DOI: 10.1016/j.fob.2013.09.008 DOI Help
PMID: 24251114 PMID Help

Authors: Chantel N. Jensen (University of York) , Sohail T. Ali (Plymouth Marine Laboratory) , Michael J. Allen (Plymouth Marine Laboratory) , Gideon Grogan (University of York)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Febs Open Bio

State: Published (Approved)
Published: October 2013

Open Access Open Access

Abstract: The flavoprotein monooxygenase (FPMO) from Stenotrophomonas maltophilia (SMFMO, Uniprot: B2FLR2) catalyses the asymmetric oxidation of thioethers and is unusual amongst FPMOs in its ability to use the non-phosphorylated cofactor NADH, as well as NADPH, for the reduction of the FAD coenzyme. In order to explore the basis for cofactor promiscuity, structure-guided mutation of two residues in the cofactor binding site, Gln193 and His194, in SMFMO were performed in an attempt to imitate the cofactor binding site of the NADPH-dependent FMO from Methylophaga aminisulfidivorans sp. SK1 (mFMO), in which structurally homologous residues Arg234 and Thr235 bind the NADPH 2?-ribose phosphate. Mutation of His194 to threonine proved most significant, with a switch in specificity from NADH to NADPH [(kcat/Km NADH)/kcat/Km NADPH) from 1.5:1 to 1:3.5, mostly as a result of a reduced Km for NADPH of approximately sevenfold in the His194Thr mutant. The structure of the Gln193Arg/His194Thr mutant revealed no substantial changes in the backbone of the enzyme or orientation of side chains resulting from mutation. Mutation of Phe52, in the vicinity of FAD, and which in mFMO is an asparagine thought to be responsible for flavin hydroperoxide stabilisation, is, in SMFMO, a determinant of enantioselectivity in sulfoxidation. Mutation of Phe52 to valine resulted in a mutant that transformed para-tolyl methyl sulfide into the (S)-sulfoxide with 32% e.e., compared to 25% (R)- for the wild type. These results shed further light both on the cofactor specificity of FPMOs, and their determinants of enantioselectivity, with a view to informing engineering studies of FPMOs in the future.

Journal Keywords: Flavoprotein Monoxygenase; Baeyer–Villiger Monoxygenase; Sulfoxide; Biocatalyst; Nadph

Subject Areas: Biology and Bio-materials

Instruments: I03-Macromolecular Crystallography

Discipline Tags:

Technical Tags: