Publication
Article Metrics
Citations
Online attention
Side-chain control of porosity closure in single- and multiple-peptide-based porous materials by cooperative folding
Authors:
C.
Martí-Gastaldo
(University of Liverpool)
,
D.
Antypov
(University of Liverpool)
,
M. E.
Briggs
(University of Liverpool)
,
P. A.
Chater
(University of Liverpool)
,
P. V.
Wiper
(University of Liverpool)
,
Gary
Miller
(University of Liverpool)
,
Y. Z.
Khimyak
(University of Liverpool)
,
G. R.
Darling
(University of Liverpool)
,
N. G.
Berry
(University of Liverpool)
,
M. J.
Rosseinsky
(University of Liverpool)
,
J. E.
Warren
(University of Liverpool)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Nature Chemistry
, VOL 6 (4)
, PAGES 343 - 351
State:
Published (Approved)
Published:
February 2013
Diamond Proposal Number(s):
7036
Abstract: Porous materials are attractive for separation and catalysis—these applications rely on selective interactions between host materials and guests. In metal–organic frameworks (MOFs), these interactions can be controlled through a flexible structural response to the presence of guests. Here we report a MOF that consists of glycyl–serine dipeptides coordinated to metal centres, and has a structure that evolves from a solvated porous state to a desolvated non-porous state as a result of ordered cooperative, displacive and conformational changes of the peptide. This behaviour is driven by hydrogen bonding that involves the side-chain hydroxyl groups of the serine. A similar cooperative closure (reminiscent of the folding of proteins) is also displayed with multipeptide solid solutions. For these, the combination of different sequences of amino acids controls the framework's response to the presence of guests in a nonlinear way. This functional control can be compared to the effect of single-point mutations in proteins, in which exchange of single amino acids can radically alter structure and function.
Journal Keywords: Metal–organic frameworks; Solid-state chemistry
Subject Areas:
Chemistry,
Materials
Instruments:
I11-High Resolution Powder Diffraction
,
I19-Small Molecule Single Crystal Diffraction
Added On:
30/06/2014 10:56
Discipline Tags:
Chemistry
Materials Science
Chemical Engineering
Engineering & Technology
Metal-Organic Frameworks
Metallurgy
Organometallic Chemistry
Technical Tags:
Diffraction
Single Crystal X-ray Diffraction (SXRD)
X-ray Powder Diffraction