Article Metrics


Online attention

Carbohydrate Conformation and Lipid Condensation in Monolayers Containing Glycosphingolipid Gb3: Influence of Acyl Chain Structure

DOI: 10.1016/j.bpj.2014.07.023 DOI Help
PMID: 25185550 PMID Help

Authors: Erik Watkins (Institut Laue Langevin, Grenoble, France) , Haifei Gao (Institut Curie, France) , Andrew Dennison (Uppsala University, Sweden.) , Nathalie Chopin (Institut Curie, France) , Bernd Struth (DESY, Germany) , Tom Arnold (Diamond Light Source) , Jean-claude Florent (Institut Curie, France) , Ludger Johannes (Institut Curie, France)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Biophysical Journal , VOL 107 (5) , PAGES 1146 - 1155

State: Published (Approved)
Published: September 2014
Diamond Proposal Number(s): 8072

Abstract: Globotriaosylceramide (Gb3), a glycosphingolipid found in the plasma membrane of animal cells, is the endocytic receptor of the bacterial Shiga toxin. Using x-ray reflectivity (XR) and grazing incidence x-ray diffraction (GIXD), lipid monolayers containing Gb3 were investigated at the air-water interface. XR probed Gb3 carbohydrate conformation normal to the interface, whereas GIXD precisely characterized Gb3’s influence on acyl chain in-plane packing and area per molecule (APM). Two phospholipids, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), were used to study Gb3 packing in different lipid environments. Furthermore, the impact on monolayer structure of a naturally extracted Gb3 mixture was compared to synthetic Gb3 species with uniquely defined acyl chain structures. XR results showed that lipid environment and Gb3 acyl chain structure impact carbohydrate conformation with greater solvent accessibility observed for smaller phospholipid headgroups and long Gb3 acyl chains. In general, GIXD showed that Gb3 condensed phospholipid packing resulting in smaller APM than predicted by ideal mixing. Gb3’s capacity to condense APM was larger for DSPC monolayers and exhibited different dependencies on acyl chain structure depending on the lipid environment. The interplay between Gb3-induced changes in lipid packing and the lipid environment’s impact on carbohydrate conformation has broad implications for glycosphingolipid macromolecule recognition and ligand binding.

Journal Keywords: Biophysics; Lipid

Subject Areas: Biology and Bio-materials, Chemistry, Materials

Instruments: I07-Surface & interface diffraction

Other Facilities: Hasylab BW1

Discipline Tags:

Technical Tags: