Publication

Article Metrics

Citations


Online attention

Conformational diversity and enantioconvergence in potato epoxide hydrolase 1

DOI: 10.1039/C6OB00060F DOI Help

Authors: P. Bauer (Uppsala University) , G. Carlsson (Uppsala University) , B. A. Amrein (Uppsala University) , D. Dobritzsch (Uppsala University) , M. Widersten (Uppsala University) , S. C. L. Kamerlin (Uppsala University)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Org. Biomol. Chem.

State: Published (Approved)
Published: April 2016
Diamond Proposal Number(s): 1171

Open Access Open Access

Abstract: Potato epoxide hydrolase 1 (StEH1) is a biocatalytically important enzyme that exhibits rich enantio- and regioselectivity in the hydrolysis of chiral epoxide substrates. In particular, StEH1 has been demonstrated to enantioconvergently hydrolyze racemic mixes of styrene oxide (SO) to yield (R)-1-phenylethanediol. This work combines computational, crystallographic and biochemical analyses to understand both the origins of the enantioconvergent behavior of the wild-type enzyme, as well as shifts in activities and substrate binding preferences in an engineered StEH1 variant, R-C1B1, which contains four active site substitutions (W106L, L109Y, V141K and I155V). Our calculations are able to reproduce both the enantio- and regioselectivities of StEH1, and demonstrate a clear link between different substrate binding modes and the corresponding selectivity, with the preferred binding modes being shifted between the wild-type enzyme and the R-C1B1 variant. Additionally, we demonstrate that the observed changes in selectivity and the corresponding enantioconvergent behavior are due to a combination of steric and electrostatic effects that modulate both the accessibility of the different carbon atoms to the nucleophilic side chain of D105, as well as the interactions between the substrate and protein amino acid side chains and active site water molecules. Being able to computationally predict such subtle effects for different substrate enantiomers, as well as to understand their origin and how they are affected by mutations, is an important advance towards the computational design of improved biocatalysts for enantioselective synthesis.

Subject Areas: Chemistry


Instruments: I04-Macromolecular Crystallography

Other Facilities: ESRF