Article Metrics


Online attention

In situ small-angle X-ray scattering studies of sterically-stabilized diblock copolymer nanoparticles formed during polymerization-induced self-assembly in non-polar media

DOI: 10.1039/C6SC01243D DOI Help

Authors: Matthew Derry (University of Sheffield) , Lee Fielding (University of Sheffield) , Nicholas Warren (University of Sheffield) , Charlotte Mable (University of Sheffield) , Andrew J Smith (Diamond Light Source) , Oleksandr Mykhaylyk (The University of Sheffield) , Steven P. Armes (The University of Sheffield)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Chem. Sci.

State: Published (Approved)
Published: April 2016
Diamond Proposal Number(s): 9490

Open Access Open Access

Abstract: Reversible addition-fragmentation chain transfer (RAFT) dispersion polymerization of benzyl methacrylate (BzMA) is uti-lized to prepare a series of poly(stearyl methacrylate)-poly(benzyl methacrylate) (PSMA-PBzMA) diblock copolymer nano-objects at 90 °C directly in mineral oil. Polymerization-induced self-assembly (PISA) occurs under these conditions, with the resulting nanoparticles exhibiting spherical, worm-like or vesicular morphologies when using a relatively short PSMA13 mac-romolecular chain transfer agent (macro-CTA), as confirmed by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS) studies. Only kinetically-trapped spherical nanoparticles are obtained when using longer macro-CTAs (e.g. PSMA18 or PSMA31), with higher mean degrees of polymerization (DPs) for the PBzMA core-forming block pro-ducing progressively larger spheres. SAXS is used for the first time to monitor the various morphological transitions that oc-cur in situ during the RAFT dispersion polymerization of BzMA when targeting either spheres or vesicles as the final copol-ymer morphology. This powerful characterization technique in combination with 1H NMR studies enables the evolution of particle diameter, mean aggregation number (Nagg), number of copolymer chains per unit surface area (Sagg) and the distance between copolymer chains at the core-shell interface (dint) to be monitored as a function of monomer conversion for kinet-ically-trapped spheres. Moreover, the gradual evolution of copolymer morphology during PISA is confirmed unequivocally, with approximate ‘lifetimes’ assigned to the intermediate pure sphere and worm morphologies when targeting PSMA13-PBzMA150 vesicles. Within vesicle phase space, the membrane thickness (Tm) increases linearly with PBzMA DP. Further-more, a combination of dynamic light scattering (DLS), TEM and both in situ and post mortem SAXS studies indicate that the lumen volume is reduced while the overall vesicle dimensions remain essentially constant. Thus the constrained vesicles grow inwards, as recently reported for an aqueous PISA formulation. This suggests a universal vesicle growth mechanism for all PISA formulations.

Subject Areas: Chemistry, Materials

Instruments: I22-Small angle scattering & Diffraction

Discipline Tags:

Technical Tags: