Article Metrics


Online attention

4-D imaging of sub-second dynamics in pore-scale processes using real-time synchrotron X-ray tomography

DOI: 10.5194/se-7-1059-2016 DOI Help

Authors: Katherine J. Dobson (Ludwig-Maximilians-Universität München) , Sophia B. Coban (University of Manchester) , Samuel A. Mcdonald (University of Manchester) , Joanna N. Walsh (University of Manchester) , Robert C. Atwood (Diamond Light Source) , Philip J. Withers (University of Manchester)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Solid Earth , VOL 7 , PAGES 1059 - 1073

State: Published (Approved)
Published: July 2016
Diamond Proposal Number(s): 10500

Open Access Open Access

Abstract: A variable volume flow cell has been integrated with state-of-the-art ultra-high-speed synchrotron X-ray tomography imaging. The combination allows the first real-time (sub-second) capture of dynamic pore (micron)-scale fluid transport processes in 4-D (3-D + time). With 3-D data volumes acquired at up to 20 Hz, we perform in situ experiments that capture high-frequency pore-scale dynamics in 5–25 mm diameter samples with voxel (3-D equivalent of a pixel) resolutions of 2.5 to 3.8 µm. The data are free from motion artefacts and can be spatially registered or collected in the same orientation, making them suitable for detailed quantitative analysis of the dynamic fluid distribution pathways and processes. The methods presented here are capable of capturing a wide range of high-frequency nonequilibrium pore-scale processes including wetting, dilution, mixing, and reaction phenomena, without sacrificing significant spatial resolution. As well as fast streaming (continuous acquisition) at 20 Hz, they also allow larger-scale and longer-term experimental runs to be sampled intermittently at lower frequency (time-lapse imaging), benefiting from fast image acquisition rates to prevent motion blur in highly dynamic systems. This marks a major technical breakthrough for quantification of high-frequency pore-scale processes: processes that are critical for developing and validating more accurate multiscale flow models through spatially and temporally heterogeneous pore networks.

Journal Keywords: tomography, real-time, 4D CT, fluid flow,

Subject Areas: Earth Science, Technique Development, Environment

Instruments: I12-JEEP: Joint Engineering, Environmental and Processing

Added On: 20/09/2016 10:07


Discipline Tags:

Technical Tags: