Article Metrics


Online attention

Magnetostriction-driven ground-state stabilization in 2H perovskites

DOI: 10.1103/PhysRevB.94.134404 DOI Help

Authors: D. G. Porter (Diamond Light Source) , M. S. Senn (Diamond Light Source; Inorganic Chemistry Laboratory, University of Oxford) , D. D. Khalyavin (ISIS Facility, Rutherford Appleton Laboratory-STFC) , A. Cortese (Department of Chemistry & Biochemistry, University of South Carolina) , N. Waterfield Price (Diamond Light Source; University of Oxford) , P. G. Radaelli (University of Oxford) , P. Manuel (ISIS Facility, Rutherford Appleton Laboratory-STFC) , H.-c. Zur-loye (4Department of Chemistry & Biochemistry, University of South Carolina) , C. Mazzoli (6VI di Fisica, unità CNISM, Politecnico di Milano; 7National Synchrotron Light Source II, Brookhaven National Laboratory) , Alessandro Bombardi (Diamond Light Source; University of Oxford)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Physical Review B , VOL 94

State: Published (Approved)
Published: October 2016
Diamond Proposal Number(s): 9409 , 12609

Open Access Open Access

Abstract: The magnetic ground state of Sr3ARuO6, with A=(Li,Na), is studied using neutron diffraction, resonant x-ray scattering, and laboratory characterization measurements of high-quality crystals. Combining these results allows us to observe the onset of long-range magnetic order and distinguish the symmetrically allowed magnetic models, identifying in-plane antiferromagnetic moments and a small ferromagnetic component along the c axis. While the existence of magnetic domains masks the particular in-plane direction of the moments, it has been possible to elucidate the ground state using symmetry considerations. We find that due to the lack of local anisotropy, antisymmetric exchange interactions control the magnetic order, first through structural distortions that couple to in-plane antiferromagnetic moments and second through a high-order magnetoelastic coupling that lifts the degeneracy of the in-plane moments. The symmetry considerations used to rationalize the magnetic ground state are very general and will apply to many systems in this family, such as Ca3ARuO6, with A=(Li,Na), and Ca3LiOsO6 whose magnetic ground states are still not completely understood.

Subject Areas: Physics, Materials, Technique Development

Instruments: I16-Materials and Magnetism