Article Metrics


Online attention

Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates

DOI: 10.1038/ncomms13141 DOI Help

Authors: G. Mattoni (Delft University of Technology) , P. Zubko (London Centre for Nanotechnology and Department of Physics and Astronomy, University College London) , F. Maccherozzi (Diamond Light Source) , A. J. H. Van Der Torren (Kamerlingh Onnes-Huygens Laboratory, Leiden University) , D. B. Boltje (Kamerlingh Onnes-Huygens Laboratory, Leiden University) , M. Hadjimichael (University College London (UCL)) , N. Manca (Delft University of Technology) , S. Catalano (Département de Physique de la Matière Quantique, University of Geneva) , M. Gibert (Département de Physique de la Matière Quantique, University of Geneva) , Y. Liu (Diamond Light Source) , J. Aarts (Kamerlingh Onnes-Huygens Laboratory, Leiden University) , J.-M. Triscone (Département de Physique de la Matière Quantique, University of Geneva) , S. S. Dhesi (Diamond Light Source) , A. D. Caviglia (Delft University of Technology)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Nature Communications , VOL 7

State: Published (Approved)
Published: November 2016
Diamond Proposal Number(s): 13081 , 10428

Open Access Open Access

Abstract: Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal–insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.

Journal Keywords: Electronic properties and materials; Phase transitions and critical phenomena; Surfaces, interfaces and thin films

Subject Areas: Materials, Physics

Instruments: I06-Nanoscience (XPEEM)

Added On: 08/11/2016 09:12


Discipline Tags:

Surfaces Hard condensed matter - electronic properties Physics Hard condensed matter - structures Electronics Materials Science interfaces and thin films Nanoscience/Nanotechnology

Technical Tags:

Microscopy Spectroscopy Electron Microscopy (EM) PhotoEmmission Electron Microscopy (PEEM) X-ray Absorption Spectroscopy (XAS)