Publication
Article Metrics
Citations
Online attention
Striped nanoscale phase separation at the metal-insulator transition of heteroepitaxial nickelates
Authors:
G.
Mattoni
(Delft University of Technology)
,
P.
Zubko
(London Centre for Nanotechnology and Department of Physics and Astronomy, University College London)
,
F.
Maccherozzi
(Diamond Light Source)
,
A. J. H.
Van Der Torren
(Kamerlingh Onnes-Huygens Laboratory, Leiden University)
,
D. B.
Boltje
(Kamerlingh Onnes-Huygens Laboratory, Leiden University)
,
M.
Hadjimichael
(University College London (UCL))
,
N.
Manca
(Delft University of Technology)
,
S.
Catalano
(Département de Physique de la Matière Quantique, University of Geneva)
,
M.
Gibert
(Département de Physique de la Matière Quantique, University of Geneva)
,
Y.
Liu
(Diamond Light Source)
,
J.
Aarts
(Kamerlingh Onnes-Huygens Laboratory, Leiden University)
,
J.-M.
Triscone
(Département de Physique de la Matière Quantique, University of Geneva)
,
S. S.
Dhesi
(Diamond Light Source)
,
A. D.
Caviglia
(Delft University of Technology)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Nature Communications
, VOL 7
State:
Published (Approved)
Published:
November 2016
Diamond Proposal Number(s):
13081
,
10428

Abstract: Nucleation processes of mixed-phase states are an intrinsic characteristic of first-order phase transitions, typically related to local symmetry breaking. Direct observation of emerging mixed-phase regions in materials showing a first-order metal–insulator transition (MIT) offers unique opportunities to uncover their driving mechanism. Using photoemission electron microscopy, we image the nanoscale formation and growth of insulating domains across the temperature-driven MIT in NdNiO3 epitaxial thin films. Heteroepitaxy is found to strongly determine the nanoscale nature of the phase transition, inducing preferential formation of striped domains along the terraces of atomically flat stepped surfaces. We show that the distribution of transition temperatures is a local property, set by surface morphology and stable across multiple temperature cycles. Our data provide new insights into the MIT of heteroepitaxial nickelates and point to a rich, nanoscale phenomenology in this strongly correlated material.
Journal Keywords: Electronic properties and materials; Phase transitions and critical phenomena; Surfaces, interfaces and thin films
Subject Areas:
Materials,
Physics
Instruments:
I06-Nanoscience
Added On:
08/11/2016 09:12
Documents:
ncomms13141.pdf
Discipline Tags:
Surfaces
Hard condensed matter - electronic properties
Physics
Hard condensed matter - structures
Electronics
Materials Science
interfaces and thin films
Nanoscience/Nanotechnology
Technical Tags:
Microscopy
Spectroscopy
Electron Microscopy (EM)
PhotoEmmission Electron Microscopy (PEEM)
X-ray Absorption Spectroscopy (XAS)