Publication
Article Metrics
Citations
Online attention
Structural evolution of CO2-filled pure silica LTA zeolite under high-pressure high-temperature conditions
DOI:
10.1021/acs.chemmater.7b01158
Authors:
David
Santamaria Perez
(Universidad de Valencia)
,
Tomas
Marqueño
(Universidad de Valencia)
,
Simon
Macleod
(Atomic Weapons Establishment; Imperial College London)
,
Javier
Ruiz-Fuertes
(Universidad de Valencia)
,
Dominik
Daisenberger
(Diamond Light Source)
,
Raquel
Chulia-Jordan
(Universidad de Valencia)
,
Daniel
Errandonea
(Universidad de Valencia)
,
Jose Luis
Jorda
(Instituto de Tecnología Química, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas)
,
Fernando
Rey
(Instituto de Tecnología Química, Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas)
,
Chris
Mcguire
(University of California Los Angeles)
,
Adam
Makhluf
(University of California Los Angeles)
,
Abby
Kavner
(University of California Los Angeles)
,
Catalin
Popescu
(ALBA-CELLS)
Co-authored by industrial partner:
Yes
Type:
Journal Paper
Journal:
Chemistry Of Materials
State:
Published (Approved)
Published:
May 2017
Abstract: The crystal structure of CO2-filled pure-SiO2 LTA zeolite has been studied at high pressures and temperatures using synchrotron-based x-ray powder diffraction. Its structure consists of 13 CO2 guest molecules, 12 of them accommodated in the large α-cages and 1 in the β-cages, giving a SiO2:CO2 stoichiometric ratio smaller than 2. The structure remains stable under pressure up to 20 GPa with a slight pressure-dependent rhombohedral distortion, indicating that pressure-induced amorphization is prevented by the insertion of guest species in this open framework. The ambient-temperature lattice compressibility has been determined. In situ high-pressure resistive-heating experiments up to 750 K allow us to estimate the thermal expansivity at P~5 GPa. Our data confirm that the insertion of CO2 reverses the negative thermal expansion of the empty zeolite structure. No evidence of any chemical reaction was observed. The possibility of synthesizing a silicon carbonate at high temperatures and higher pressures is discussed in terms of the evolution of C – O and Si – O distances between molecular and framework atoms.
Subject Areas:
Chemistry,
Materials
Facility: Advanced Photon Source
Added On:
08/05/2017 10:27
Discipline Tags:
Zeolites
Chemistry
Materials Science
Chemical Engineering
Engineering & Technology
Inorganic Chemistry
Technical Tags: