Publication
Article Metrics
Citations
Online attention
Supercritical antisolvent precipitation of amorphous copper–zinc georgeite and acetate precursors for the preparation of ambient-pressure water-gas-shift copper/zinc oxide catalysts
Authors:
Paul J.
Smith
(Cardiff Catalysis Institute, Cardiff University)
,
Simon A.
Kondrat
(Cardiff Catalysis Institute, Cardiff University)
,
James H.
Carter
(Cardiff Catalysis Institute, Cardiff University)
,
Philip A.
Chater
(Diamond Light Source)
,
Jonathan K.
Bartley
(Cardiff Catalysis Institute, Cardiff University)
,
Stuart
Taylor
(Cardiff Catalysis Institute, Cardiff University)
,
Michael S.
Spencer
(Cardiff Catalysis Institute, Cardiff University)
,
Graham J.
Hutchings
(Cardiff Catalysis Institute, Cardiff University)
Co-authored by industrial partner:
No
Type:
Journal Paper
Journal:
Chemcatchem
, VOL 9
, PAGES 1621 - 1631
State:
Published (Approved)
Published:
May 2017

Abstract: A series of copper–zinc acetate and zincian georgeite precursors have been produced by supercritical CO2 antisolvent (SAS) precipitation as precursors to Cu/ZnO catalysts for the water gas shift (WGS) reaction. The amorphous materials were prepared by varying the water/ethanol volumetric ratio in the initial metal acetate solutions. Water addition promoted georgeite formation at the expense of mixed metal acetates, which are formed in the absence of the water co-solvent. Optimum SAS precipitation occurs without water to give high surface areas, whereas high water content gives inferior surface areas and copper–zinc segregation. Calcination of the acetates is exothermic, producing a mixture of metal oxides with high crystallinity. However, thermal decomposition of zincian georgeite resulted in highly dispersed CuO and ZnO crystallites with poor structural order. The georgeite-derived catalysts give superior WGS performance to the acetate-derived catalysts, which is attributed to enhanced copper–zinc interactions that originate from the precursor.
Journal Keywords: copper; gas-phase reactions; supercritical fluids; water; zinc
Subject Areas:
Chemistry
Facility: Advanced Photon Source
Added On:
17/07/2017 16:03
Documents:
Smith_et_al-2017-ChemCatChem.pdf
Discipline Tags:
Physical Chemistry
Catalysis
Chemistry
Inorganic Chemistry
Technical Tags: