Publication

Article Metrics

Citations


Online attention

Transparent conducting n-type ZnO:Sc – synthesis, optoelectronic properties and theoretical insight

DOI: 10.1039/C7TC02389H DOI Help

Authors: Sebastian C. Dixon (University College London) , Sanjay Sathasivam (University College London) , Benjamin A. D. Williamson (University College London) , David O. Scanlon (University College London; Diamond Light Source) , Claire J. Carmalt (University College London) , Ivan P. Parkin (University College London)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: J. Mater. Chem. C , VOL 12

State: Published (Approved)
Published: July 2017

Open Access Open Access

Abstract: A joint theoretical-experimental study has been carried out for Sc-doped ZnO (SZO), one of the lesser-studied n-type transparent conducting oxide materials. Density functional theory has been used to create a computational model of SZO, in order to provide a theoretical basis for experimentally-observed phenomena where growth conditions, dopability and electronic properties are concerned. Meanwhile a range of thin films of SZO have been synthesised via chemical vapour deposition in an attempt to (i) observe experimentally the theoretically predicted properties, thereby providing mutual validation of the studies; (ii) seek the optimum dopant quantity for minimal electrical resistivity, and; (iii) demonstrate that transparent and electrically conductive SZO can be synthesised by chemical vapour deposition means. The films exhibit resistivities as low as ρ = 1.2 × 10−3 Ω cm, with carrier density n = 7.2 × 1020 cm−3 and charge carrier mobility μ = 7.5 cm2 V−1 s−1. Low resistivity of the films was retained after 12 months in storage under ambient conditions, indicating strong atmospheric stability. The films exhibit a high degree of transparency with 88% transmission in the visible range (400–750 nm). A correction to the Tauc method was applied to estimate band gaps of Eoptg = 3.45 ± 0.03 eV in the most conductive SZO sample and Eoptg = 3.34 ± 0.03 eV in nominally undoped ZnO.

Subject Areas: Chemistry, Materials


Technical Areas:

Documents:
C7TC02389H.pdf