Publication

Article Metrics

Citations


Online attention

Microstructural consequences of blast lung injury characterized with digital volume correlation

DOI: 10.3389/fmats.2017.00041 DOI Help

Authors: Hari Arora (Swansea University; Imperial College London) , Alex Nila (LaVisionUK Ltd) , Kalpani Vitharana (Imperial College London) , Joseph M. Sherwood (Imperial College London) , Thuy-Tien N. Nguyen (Imperial College London) , Angelo Karunaratne (University of Moratuwa) , Idris K. Mohammed (Imperial College London) , Andrew J. Bodey (Diamond Light Source) , Peter J. Hellyer (Imperial College London) , Darryl R. Overby (Imperial College London) , Robert C. Schroter (Imperial College London) , Dave Hollis (LaVisionUK Ltd)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Frontiers In Materials , VOL 4

State: Published (Approved)
Published: December 2017
Diamond Proposal Number(s): 12864

Open Access Open Access

Abstract: This study focuses on microstructural changes that occur within the mammalian lung when subject to blast and how these changes influence strain distributions within the tissue. Shock tube experiments were performed to generate the blast injured specimens (cadaveric Sprague-Dawley rats). Blast overpressures of 100 and 180 kPa were studied. Synchrotron tomography imaging was used to capture volumetric image data of lungs. Specimens were ventilated using a custom-built system to study multiple inflation pressures during each tomography scan. These data enabled the first digital volume correlation (DVC) measurements in lung tissue to be performed. Quantitative analysis was performed to describe the damaged architecture of the lung. No clear changes in the microstructure of the tissue morphology were observed due to controlled low- to moderate-level blast exposure. However, significant focal sites of injury were observed using DVC, which allowed the detection of bias and concentration in the patterns of strain level. Morphological analysis corroborated the findings, illustrating that the focal damage caused by a blast can give rise to diffuse influence across the tissue. It is important to characterize the non-instantly fatal doses of blast, given the transient nature of blast lung in the clinical setting. This research has highlighted the need for better understanding of focal injury and its zone of influence (alveolar interdependency and neighboring tissue burden as a result of focal injury). DVC techniques show great promise as a tool to advance this endeavor, providing a new perspective on lung mechanics after blast.

Journal Keywords: digital volume correlation; blast lung injury; synchrotron tomography; lung microstructure; shock tube; lung biomechanics

Subject Areas: Biology and Bio-materials, Medicine


Instruments: I13-2-Diamond Manchester Imaging

Added On: 13/12/2017 08:34

Documents:
fmats-04-00041.pdf

Discipline Tags:

Health & Wellbeing Life Sciences & Biotech

Technical Tags:

Imaging Tomography