Publication

Article Metrics

Citations


Online attention

Direct observation of orbital hybridisation in a cuprate superconductor

DOI: 10.1038/s41467-018-03266-0 DOI Help

Authors: C. E. Matt (Universität Zürich; Swiss Light Source) , D. Sutter (University of Zurich) , A. M. Cook (Universität Zürich) , Y. Sassa (Uppsala University) , Martin Mansson (KTH Royal Institute of Technology) , O. Tjernberg (KTH Royal Institute of Technology) , L. Das (Universität Zürich) , M. Horio (Universität Zürich) , D. Destraz (Universität Zürich) , C. G. Fatuzzo (École Polytechnique Fedérale de Lausanne (EPFL)) , K. Hauser (Universität Zürich) , M. Shi (Swiss Light Source) , M. Kobayashi (Swiss Light Source) , V. N. Strocov (Swiss Light Source) , T. Schmitt (Swiss Light Source) , P. Dudin (Diamond Light Source) , M. Hoesch (Diamond Light Source) , S. Pyon (University of Tokyo) , T. Takayama (University of Tokyo) , H. Takagi (University of Tokyo) , O. J. Lipscombe (University of Bristol) , S. M. Hayden (University of Bristol) , T. Kurosawa (Hokkaido University) , N. Momono (Hokkaido University; Muroran Institute of Technology) , M. Oda (Hokkaido University) , T. Neupert (Universität Zürich) , J. Chang (Universität Zürich)
Co-authored by industrial partner: No

Type: Journal Paper
Journal: Nature Communications , VOL 9

State: Published (Approved)
Published: March 2018
Diamond Proposal Number(s): 10550

Open Access Open Access

Abstract: The minimal ingredients to explain the essential physics of layered copper-oxide (cuprates) materials remains heavily debated. Effective low-energy single-band models of the copper–oxygen orbitals are widely used because there exists no strong experimental evidence supporting multi-band structures. Here, we report angle-resolved photoelectron spectroscopy experiments on La-based cuprates that provide direct observation of a two-band structure. This electronic structure, qualitatively consistent with density functional theory, is parametrised by a two-orbital (d x 2 −y 2 dx2-y2 and d z 2 dz2 ) tight-binding model. We quantify the orbital hybridisation which provides an explanation for the Fermi surface topology and the proximity of the van-Hove singularity to the Fermi level. Our analysis leads to a unification of electronic hopping parameters for single-layer cuprates and we conclude that hybridisation, restraining d-wave pairing, is an important optimisation element for superconductivity.

Journal Keywords: Condensed-matter physics; Electronic properties and materials; Superconducting properties and materials

Subject Areas: Materials, Physics


Instruments: I05-ARPES

Other Facilities: Swiss Light Source

Documents:
s41467-018-03266-0.pdf